On Teichmüller contraction
Author:
Frederick P. Gardiner
Journal:
Proc. Amer. Math. Soc. 118 (1993), 865875
MSC:
Primary 30F60; Secondary 32G15
MathSciNet review:
1152277
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Universal Teichmüller space is the space of quasisymmetric homeomorphisms of a circle factored by those Möbius transformations that preserve the circle. Another Teichmüller space, which also has universal properties, is factored by the closed subgroup of symmetric homeomorphisms. Teichmüller's metric for is the boundary dilatation metric. Sullivan's coiling property for Beltrami lines and the HamiltonReichStrebel necessary and sufficient condition for extremality are proved for . The coiling property implies a contraction principle for certain types of selfmappings of Teichmüller space. It is also shown that the boundary dilatation metric has an infinitesimal form and that this metric is the integral of its infinitesimal form.
 [1]
Lars
Ahlfors and Lipman
Bers, Riemann’s mapping theorem for variable metrics,
Ann. of Math. (2) 72 (1960), 385–404. MR 0115006
(22 #5813)
 [2]
Richard
Fehlmann, Extremal quasiconformal mappings with free boundary
components in domains of arbitrary connectivity, Math. Z.
184 (1983), no. 1, 109–126. MR 711732
(85i:30042), http://dx.doi.org/10.1007/BF01162010
 [3]
Frederick
P. Gardiner, Approximation of infinitedimensional
Teichmüller spaces, Trans. Amer. Math.
Soc. 282 (1984), no. 1, 367–383. MR 728718
(85f:30082), http://dx.doi.org/10.1090/S00029947198407287187
 [4]
Frederick
P. Gardiner, Teichmüller theory and quadratic
differentials, Pure and Applied Mathematics (New York), John Wiley
& Sons, Inc., New York, 1987. A WileyInterscience Publication. MR 903027
(88m:32044)
 [5]
Frederick
P. Gardiner and Dennis
P. Sullivan, Symmetric structures on a closed curve, Amer. J.
Math. 114 (1992), no. 4, 683–736. MR 1175689
(95h:30020), http://dx.doi.org/10.2307/2374795
 [6]
O. Lehto and K. I. Virtanen, Quasiconformal mappings, SpringerVerlag, Berlin and New York, 1965.
 [7]
Brian
O’Byrne, On Finsler geometry and applications to
Teichmüller spaces, Advances in the Theory of Riemann Surfaces
(Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66,
Princeton Univ. Press, Princeton, N.J., 1971, pp. 317–328. MR 0286141
(44 #3355)
 [8]
Edgar
Reich, On criteria for unique extremality of Teichmüller
mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 6
(1981), no. 2, 289–301 (1982). MR 658931
(83j:30022), http://dx.doi.org/10.5186/aasfm.1981.0617
 [9]
Edgar
Reich and Kurt
Strebel, Extremal quasiconformal mappings with given boundary
values, Contributions to analysis (a collection of papers dedicated to
Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR 0361065
(50 #13511)
 [10]
H.
L. Royden, Automorphisms and isometries of Teichmüller
space, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony
Brook, N.Y., 1969) Ann. of Math. Studies, No. 66. Princeton Univ. Press,
Princeton, N.J., 1971, pp. 369–383. MR 0288254
(44 #5452)
 [11]
Dennis
Sullivan, Bounds, quadratic differentials, and renormalization
conjectures, American Mathematical Society centennial publications,
Vol. II (Providence, RI, 1988) Amer. Math. Soc., Providence, RI, 1992,
pp. 417–466. MR 1184622
(93k:58194)
 [1]
 L. V. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385404. MR 0115006 (22:5813)
 [2]
 R. Fehlmann, Extremal quasiconformal mappings with free boundary components in domains of arbitrary connectivity, Math. Z. 184 (1983), 109126. MR 711732 (85i:30042)
 [3]
 F. G. Gardiner, Approximation of infinite dimensional Teichmüller spaces, Trans. Amer. Math. Soc. 282 (1984), 367383. MR 728718 (85f:30082)
 [4]
 , Teichmüller theory and quadratic differentials, WileyInterscience, New York, 1987. MR 903027 (88m:32044)
 [5]
 F. P. Gardiner and D. P. Sullivan, Symmetric and quasisymmetric structures on a closed curve, Amer. J. Math. 114 (1992), 683736. MR 1175689 (95h:30020)
 [6]
 O. Lehto and K. I. Virtanen, Quasiconformal mappings, SpringerVerlag, Berlin and New York, 1965.
 [7]
 B. O'Byrne, On Finsler geometry and applications to Teichmüller spaces, Ann. of Math. Stud., vol. 66, Princeton Univ. Press, Princeton, NJ, 1971, pp. 317328. MR 0286141 (44:3355)
 [8]
 E. Reich, On criteria for unique extremality of Teichmüller mappings, Ann. Acad. Sci. Fenn. AI Math. 6 (1981), 289302. MR 658931 (83j:30022)
 [9]
 E. Reich and K. Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to Analysis, A Collection of Papers Dedicated to Lipman Bers, Academic Press, New York, 1974, pp. 373391. MR 0361065 (50:13511)
 [10]
 H. L. Royden, Automorphisms and isometries of Teichmüller space, Ann. of Math. Stud., vol. 66, Princeton Univ. Press, Princeton, NJ, 1971, pp. 369383. MR 0288254 (44:5452)
 [11]
 D. P. Sullivan, Bounds, quadratic differentials, and renormalization conjectures, Mathematics into the 21st Century, Amer. Math. Soc. Centennial Publication, vol. 2, Amer. Math. Soc., Providence, RI, 1991. MR 1184622 (93k:58194)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
30F60,
32G15
Retrieve articles in all journals
with MSC:
30F60,
32G15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199311522771
PII:
S 00029939(1993)11522771
Article copyright:
© Copyright 1993
American Mathematical Society
