A COUNTEREXAMPLE TO THE INFINITY VERSION OF THE HYERS AND ULAM STABILITY THEOREM

EMANUELE CASINI AND PIER LUIGI PAPINI

(Communicated by Andrew M. Bruckner)

Abstract. Hyers and Ulam proved a stability result for convex functions, defined in a subset of \mathbb{R}^n. Here we give an example showing that their result cannot be extended to those functions defined in infinite-dimensional normed spaces. Also, we give a positive result for a particular class of approximately convex functions, defined in a Banach space, whose norm satisfies the so-called convex approximation property.

1. Introduction

In this paper we discuss the following problem: let Δ be a convex subset of a Banach space X. Consider an arbitrary ϵ-convex function $f: \Delta \to \mathbb{R}$, that is, a function that satisfies for every $x, y \in \Delta$ and every $\lambda \in [0, 1]$ the inequality:

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) + \epsilon.$$

Is it true that there exists a convex function $g: \Delta \to \mathbb{R}$ such that $|g(x) - f(x)| \leq K\epsilon \forall x \in \Delta$, where K is a constant depending only on X? A positive answer was given by Hyers and Ulam [HU] (see also [Gr, C]) in the case $X = \mathbb{R}^n$ (with any norm!); the best known estimates are with $K_n = \min(M_n, L_n)$ where $M_n = (n^2 + 3n)/(4n + 4)$ and $L_n = m/2$ for $2^{m-1} \leq n < 2^m$ (see also [Ge] for a discussion concerning these constants and related questions). We will show that in the infinite-dimensional case the stability theorem of [HU] does not hold. Also we shall give a positive answer when the space X and the functions satisfy some additional properties. For midpoint convex functions a counterexample is known [Ge]; for a positive result concerning η-approximately convex functions, which are also ϵ-subadditive, see [K].

2. Counterexample

Let X be a Banach space. We denote by $B(X)$ (resp. $B_r(X)$) the unit ball (resp. ball of radius r) of X, i.e., $B(X) = \{x \in X : \|x\| \leq 1\}$ (resp.
$B_r(X) = \{ x \in X : \| x \| \leq r \}$, and if A is a subset of X, by $\text{co} \, A$ its convex hull.

We say that the set $A \subseteq X$ satisfies the condition $C^0(\epsilon)$ if $x, y \in A$ implies $(x + y)/2 \in A + B_r(X)$. We say that the set A satisfies the condition $c^0(\epsilon)$ if $x, y \in A$ and $\lambda \in [0, 1]$ implies $\lambda x + (1 - \lambda)y \in A + B_r(X)$.

Let l_1 be the Banach space of absolutely convergent sequences with the usual norm (that we will indicate by $\| x \|_1$). We will denote by $\{ e_i \}$ the standard basis of l_1. Let $C^+ = \{ x \in l_1 : x_i \geq 0 \}$, the positive cone of l_1, and $B^+ = C^+ \cap B(l_1)$.

For $p \in (0, 1)$ set $S_p = \{ x \in B^+ : \sum_{i=1}^{+\infty} x_i^p \leq 1 \}$. We need the following two propositions: the first one is in [L], but we give the proof since the paper is not very accessible, the second is in [CP].

Proposition 1. The set S_p satisfies condition $C^0(2^{1/p} - 1)$.

Proof. Let $x, y \in S_p$ such that $\sum_{i=1}^{+\infty} x_i^p = \sum_{i=1}^{+\infty} y_i^p = 1$. Then we have

$$\inf_{z \in S_p} \left\| \frac{x + y}{2} - z \right\|_1 = \inf_{z \in S_p} \sum_{i=1}^{+\infty} \left(x_i + y_i \right) - 2z_i \right\|_1 = \inf_{z \in S_p} \sum_{i=1}^{+\infty} \left(x_i^p + y_i^p \right) - 2z_i \right\|_1 \leq \inf_{z \in S_p} \sum_{i=1}^{+\infty} \left(x_i^p + y_i^p \right) - 2z_i \right\|_1.$$

For positive numbers, $s^p + t^p = z^p$ implies $s + t \leq z$; thus

$$\inf_{z \in S_p} \left\| \frac{x + y}{2} - z \right\|_1 \leq \inf_{z \in S_p} \left\| \frac{x' + y'}{2} - z \right\|_1.$$

Now let x and y be in S_p; define x', y' (still in S_p and with disjoint supports) as follows:

$$x'_{2n} = 0, \quad x'_{2n-1} = x_n, \quad y'_{2n-1} = y_n, \quad y'_{2n} = y_n.$$

Then, by using (2.1) and (2.2), we obtain

$$\inf_{z \in S_p} \left\| \frac{x + y}{2} - z \right\|_1 \leq \inf_{z \in S_p} \left\| \frac{x' + y'}{2} - z \right\|_1,$$

so we can suppose that x and y have disjoint supports. With this restriction, letting $z_i = (x_i + y_i)/2^{1/p}$ we obtain

$$\inf_{z \in S_p} \left\| \frac{x + y}{2} - z \right\|_1 \leq \left(\frac{1}{2} - \frac{1}{2^{1/p}} \right) \sum_{i=1}^{+\infty} (x_i + y_i) \leq \left(\frac{1}{2} - \frac{1}{2^{1/p}} \right) \left(\sum_{i=1}^{+\infty} (x_i + y_i)^p \right)^{1/p} = 2^{1/p - 1} - 1.$$

Since x and y are arbitrary, S_p satisfies condition $C^0(2^{1/p} - 1)$.

Proposition 2 (see [CP]). If A satisfies $C^0(\epsilon)$ then A satisfies $c^0(2\epsilon)$.

So, in particular, S_p satisfies condition $c^0(2^{1/p} - 2)$.

Now let us give the counterexample. For each $p \in (0, 1)$, let $f_p : B^+ \subset l^1 \rightarrow \mathbb{R}$ be defined in the following way: $f_p(x) = \text{dist}(x, S_p) = \inf_{z \in S_p} \| x - z \|_1$. First of all we will prove that f_p is a $(2^{1/p} - 2)$-convex function. Take $\eta > 0$,
We take \(x, y \in B^+ \), and \(z_1, z_2 \in S_p \) such that \(\|x - z_1\|_1 \leq f_p(x) + \eta \) and \(\|y - z_2\|_1 \leq f_p(y) + \eta \); then, by using Proposition 2, we obtain

\[
f_p(\lambda x + (1 - \lambda)y) = \inf_{z \in S_p} \|\lambda x + (1 - \lambda)y - z\|_1
\]

\[
\leq \inf_{z \in S_p} (\|\lambda x - z_1\|_1 + (1 - \lambda)\|y - z_2\|_1
\]

\[
+ \|\lambda z_1 + (1 - \lambda)z_2 - z\|_1)
\]

\[
\leq \lambda f_p(x) + (1 - \lambda)f_p(y) + \eta + \inf_{z \in S_p} \|\lambda z_1 + (1 - \lambda)z_2 - z\|_1
\]

\[
\leq \lambda f_p(x) + (1 - \lambda)f_p(y) + \eta + 2^{1/p} - 2.
\]

The conclusion follows from the arbitrariness of \(\eta \).

Now suppose that there exists \(K \) such that there exists a convex function \(g: B^+ \to \mathbb{R} \) satisfying \(|f_p(x) - g(x)| < K(2^{1/p} - 2) \). Take \(\overline{p} \in (0, 1) \) such that \(K(2^{1/\overline{p}} - 2) \leq 1/4 \). Let

\[
x_n = (1/n, \ldots, 1/n, 0, 0, \ldots);
\]

we have (since \(f_p(e_1) = 0 \))

\[
f_p(x_n) \leq \frac{1}{4} + g(x_n) \leq \frac{1}{4} + \sum_{i=1}^{n} \frac{g(e_i)}{n} \leq \frac{1}{4} + \sum_{i=1}^{n} \frac{f_p(e_i) + 1/4}{n} = \frac{1}{2}.
\]

This is a contradiction, since an easy calculation shows that \(f_{\overline{p}}(x_n) = 1 - n^{1-1/\overline{p}} \to 1 \) as \(n \to \infty \).

Remark 1. The finite-dimensional version of this counterexample shows that, at least asymptotically, the constants \(K_n \) that appear in [C] are best possible. In fact, define \(H_n \) as the best constant such that for every convex subset \(\Delta \) of \(\mathbb{R}^n \) and for every \(\varepsilon \)-convex function \(f \) on \(\Delta \) there exists a convex function \(g \) on \(\Delta \) such that \(|g(x) - f(x)| \leq H_n \varepsilon \) for every \(x \in \Delta \). Consider \(S_p^n = \{ x \in \mathbb{R}^n : x_i \geq 0, \sum_{i=1}^{n} x_i^p \leq 1 \} \), and define, as before, \(f_p(x) = \inf_{z \in S_p^n} \|x - z\|_1 \). Then, if \(x_n = (1/n, \ldots, 1/n) \), proceeding in the same way as before, we obtain

\[
1 - n^{1-1/p} = f_p(x_n) \leq H_n(2^{1/p} - 2) + g(x_n)
\]

\[
\leq H_n(2^{1/p} - 2) + \sum_{i=1}^{n} \frac{g(e_i)}{n}
\]

\[
\leq H_n(2^{1/p} - 2) + \sum_{i=1}^{n} \frac{f_p(e_i) + H_n(2^{1/p} - 2)}{n}
\]

\[
= 2H_n(2^{1/p} - 2).
\]

This implies

\[
H_n \geq \frac{1 - n^{1-1/p}}{4(2^{1/p} - 1 - 1)} \sim \frac{\log_2 n}{4} \quad \text{as } p \to 1^{-}.
\]

Remark 2. Now consider the Hilbert space \(l_2 = \{ x \} : \sum_{n=1}^{+\infty} x_n^2 < +\infty \} \) with the usual norm. Then the previous example works, also, if one thinks of \(B^+ \) as a subset of \(l_2 \). Notice that the convex set \(B^+ \) is a convex subset of \(l_2 \) (since algebraically \(l_1 \subset l_2 \)) and, also, it is a closed subset in \(l_2 \). Take, in fact, a
sequence \(\{x_n\} \subset B^+ \) such that \(x_n \to x \) in the \(l_2 \) norm. Then \(\{x_n\} \) converges to \(x \) in the weak-topology of \(l_2 \) and so it converges coordinatewise. But, also, as a bounded sequence in \(l_1 \) it has a subnet converging in the weak*-topology of \(l_1 \) (and in particular coordinatewise) to an element of \(l_1 \). So \(x \) belongs to \(l_1 \), thus to \(B^+ \).

Remark 3. As the previous remark pointed out, the stability problem is (in some sense) independent of the norm-topology of the Banach space in which the domain of our \(\epsilon \)-convex functions lie. A way to relate the norm to the functions is to ask that they must satisfy some lipschitz condition. Notice that the functions \(f_p \) considered in our counterexample are 1-lip, since it follows easily, from the definition of distance, that \(|f_p(x) - f_p(y)| \leq \|x - y\|_1 \). The same condition is not satisfied if we think of our example embedded in \(l_2 \). In fact, as a simple calculation shows, for any fixed \(h \) our functions are not \(h \)-lip, for every \(p \), in the \(l_2 \)-norm. This will follow directly from Theorem 1 of the next section.

3. A POSITIVE RESULT

In this section, we prove that the construction of our counterexample is possible since \(l_1 \) lacks a convexity property called the "convex approximation property" (C.A.P. for short). We will say that a Banach space \(X \) has C.A.P. if for every \(\epsilon > 0 \) and \(r > 0 \), there exists an integer \(p = p(\epsilon, r) \) such that for every \(A \subset B_r(X) \) we have \(\text{co} A \subset \text{co}_p A + B_r(X) \), where \(\text{co}_p A = \{ x \in X : x = \sum_{i=0}^p \alpha_i x_i, \ x_i \in X, \ \alpha_i \geq 0, \ \sum_{i=0}^p \alpha_i = 1 \} \). In other words, each element of \(\text{co} A \) can be \(\epsilon \)-approximated by a convex combination of no more than \(p \) vectors of \(A \). We will say that \(X \) is B-convex [P] if there exist constants \(c > 0 \), \(p > 1 \) such that for every \(n \) and all independent random variables \(g_1, \ldots, g_n \) with values in \(X \) we have

\[
E \left(\left\| \sum_{i=1}^n g_i \right\|_X^p \right) \leq c^p \sum_{i=1}^n E \|g_i\|_X^p .
\]

It is easy to construct a sequence of independent random variables with values in \(l_1 \) such that (3.1) does not hold. This implies that \(l_1 \) is not B-convex and so it does not have C.A.P. since we have the following result of Bruck [B].

Proposition 3. A Banach space \(X \) has C.A.P. if and only if it is B-convex. Moreover, in this case, there exist constants \(c > 0 \), \(q > 1 \) depending on \(X \) and \(r \) such that, for every \(A \subset B_r(X) \), we can choose \(p \) (in the definition of C.A.P.) via \(p \leq c \epsilon^{q/(1-q)} \).

The main result is the following:

Theorem 1. Let \(X \) a B-convex Banach space, \(h > 0 \), and \(\Delta \) a bounded convex subset of \(X \). Then, for every \(f : \Delta \to \mathcal{R} \), which is \(\epsilon \)-convex and \(h \)-lip, there exists (for \(\epsilon \) sufficiently small) a constant \(K \) (depending on \(X \), \(h \), and \(\text{diam}(\Delta) \)) such that there exists a convex function \(g : \Delta \to \mathcal{R} \) satisfying \(|f(x) - g(x)| \leq Ke \log_2 \epsilon \).

We will use the following lemma, the proof of which can be found in several papers and in [C] with the best known constants.
Lemma 1. Let X be a B-convex Banach space and $f: \Delta \subset X \rightarrow \mathbb{R}$ an ϵ-convex function. Then for $x_0, \ldots, x_p \in \Delta$, $\alpha_0, \ldots, \alpha_p \in [0, 1]$, $\alpha_1 + \cdots + \alpha_p = 1$, and all integers p, we have $f(\sum_{i=0}^{p} \alpha_i x_i) \leq \sum_{i=0}^{p} \alpha_i f(x_i) + 2K_p \epsilon$. (For the definition of K_n see the introduction.)

Proof of Theorem 1. Suppose that $\Delta \subseteq B_r(x)$ and let $d = \text{diam}(\Delta)$. We take $Z = X \oplus \mathbb{R}$ with $\|z\| = \|(x, y)\| = \|x\| + |y|$ $(x \in X, \ y \in \mathbb{R})$. It is easy to show that Z is a B-convex Banach space since X is B-convex, and so it has C.A.P. Since f is h-lip then f is bounded on Δ. Let $m = \inf_{x \in \Delta} f(x)$, $M = \sup_{x \in \Delta} f(x)$, and $H_0 = \{z \in Z : z = (x, y), x \in \Delta, f(x) \leq y \leq M\}$. We have to show that H_0 is a bounded subset of Z. In fact, if we take $z_1, z_2 \in H_0$ we have

$$\|z_1 - z_2\| = \|x_1 - x_2\| + |y_1 - y_2| \leq d + M - m,$$

but as a consequence of the lipschitz condition on f we have $M - m \leq h d$, so $\text{diam}(H_0) \leq (1 + h)d$.

Take $\eta > 0$. Then there exists an integer p such that if $z \in \text{co} H_0$ there exist $z_0, \ldots, z_p \in H_0$ and $\alpha_0, \ldots, \alpha_p$ so that

$$\left\| z - \sum_{i=0}^{p} \alpha_i z_i \right\| = \left\| x - \sum_{i=0}^{p} \alpha_i x_i \right\| + \left\| y - \sum_{i=0}^{p} \alpha_i y_i \right\| \leq \eta.$$

Then by using Lemma 1

$$f(x) = f(x) - f\left(\sum_{i=0}^{p} \alpha_i x_i\right) + f\left(\sum_{i=0}^{p} \alpha_i x_i\right) \leq f(x) - f\left(\sum_{i=0}^{p} \alpha_i x_i\right) + \sum_{i=0}^{p} \alpha_i f(x_i) + 2K_p \epsilon \leq h \|x - \sum_{i=0}^{p} \alpha_i x_i\| + \sum_{i=0}^{p} \alpha_i y_i - y + y + 2K_p \epsilon \leq h' \eta + y + 2K_p \epsilon \quad (h' = \max(h, 1)).$$

Taking into account the upper bound for p given in Proposition 3 and the value of the constant K_n, we obtain (for p sufficiently large, that is, for η small)

$$f(x) \leq h' \eta + (1 + \log_2 c \eta^{q/(1-q)}) \epsilon + y.$$

Since η was arbitrary, we can choose: $\eta = q \epsilon/(1 - q) h' \log_2 \epsilon$ (this is the minimum point of the function $g(\eta) = h' \eta + (1 + \log_2 c \eta^{q/(1-q)}) \epsilon$). Then we obtain

$$f(x) \leq 2K \epsilon \log_2 \epsilon + y \quad (3.2)$$

for some negative constant K. Now define, for $x \in \Delta$, $g_0(x) = \inf\{y \in \mathbb{R} : (x, y) \in \text{co} H_0\}$. Then by (3.2) we have $f(x) - 2K \epsilon \log_2 \epsilon \leq g_0(x) \leq f(x)$. It is not hard to prove that g_0 is a convex function, and if we put $g(x) = g_0(x) + K \epsilon \log_2 \epsilon$ we obtain

$$f(x) - K \epsilon \log_2 \epsilon \leq g(x) \leq f(x) + K \epsilon \log_2 \epsilon,$$

which concludes the proof.
REFERENCES

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI BOLOGNA, PIAZZA PORTA S. DONATO, 5, I-40127 BOLOGNA, ITALY

E-mail address, P. L. Papini: PAPINI@DM.UNIBO.IT