Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the infimum of the Hausdorff and Vietoris topologies

Authors: S. Levi, R. Lucchetti and J. Pelant
Journal: Proc. Amer. Math. Soc. 118 (1993), 971-978
MSC: Primary 54B20; Secondary 54E35
MathSciNet review: 1165059
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the infimum of the Hausdorff and Vietoris topologies on the hyperspace of a metric space. We show that this topology coincides with the supremum of the upper Hausdorff and lower Vietoris topologies if and only if the underlying metric space is either totally bounded or is a UC space.

References [Enhancements On Off] (What's this?)

  • [At] M. Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific J. Math. 8 (1958), 11-16. MR 0099023 (20:5468)
  • [Be] G. Beer, Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Amer. Math. Soc. 95 (1985), 653-658. MR 810180 (87e:54024)
  • [BHPV] G. Beer, C. J. Himmelberg, K. Prikry, and F. S. Van Vleck, The locally finite topology on $ {2^X}$, Proc. Amer. Math. Soc. 101 (1987), 168-172. MR 897090 (88f:54014)
  • [BL] G. Beer and R. Lucchetti, Weak topologies for the closed subsets of a metrizable space, Trans. Amer. Math. Soc. (to appear). MR 1094552 (93d:54023)
  • [BLLN] G. Beer, A. Lechicki, S. Levi, and S. Naimpally, Distance functionals and suprema of hyperspace topologies, Ann. Mat. Pura Appl. (4) (to appear). MR 1199663 (94c:54016)
  • [En] R. Engelking, General topology, vol. 60, PWN, Warsaw, 1977. MR 0500780 (58:18316b)
  • [FLL] S. Francaviglia, A. Lechicki, and S. Levi, Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), 347-370. MR 813603 (87e:54025)
  • [Mi] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182. MR 0042109 (13:54f)
  • [KT] E. Klein and A. Thompson, Theory of correspondences, Wiley, New York, 1984. MR 752692 (86a:90012)
  • [Ku] K. Kuratowski, Topology, vol. 1, Academic Press, New York, 1966. MR 0217751 (36:840)
  • [Ra] J. Rainwater, Spaces whose finest uniformity is metric, Pacific J. Math. 9 (1959), 567-570. MR 0106448 (21:5180)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54B20, 54E35

Retrieve articles in all journals with MSC: 54B20, 54E35

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society