Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the entropy norm spaces and the Hardy space $ {\rm Re}\,H\sp 1$


Author: W. C. Lang
Journal: Proc. Amer. Math. Soc. 118 (1993), 861-863
MSC: Primary 42A16; Secondary 30D55, 42B30, 46E15
DOI: https://doi.org/10.1090/S0002-9939-1993-1166359-1
MathSciNet review: 1166359
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: R. Dabrowski introduced certain natural multiplier operators which map from the entropy norm spaces of B. Korenblum into the Hardy space $ \operatorname{Re} {H^1}$. We show that the images of the entropy norm spaces in $ \operatorname{Re} {H^1}$ do not include all of that space.


References [Enhancements On Off] (What's this?)

  • [1] R. Dabrowski, Probability measure representation of norms associated with the notion of entropy, Proc. Amer. Math. Soc. 90 (1984), 263-268. MR 727246 (86c:46020)
  • [2] -, On Fourier coefficients of a continuous periodic function of bounded entropy norm, Bull. Amer. Math. Soc. (N.S.) 18 (1988), 49-51. MR 919659 (89b:42002)
  • [3] -, On a natural connection between the entropy spaces and Hardy space $ \operatorname{Re} {H^1}$, Proc. Amer. Math. Soc. 104 (1988), 812-818. MR 964862 (89m:42007)
  • [4] B. Korenblum, On a class of Banach spaces associated with the notion of entropy, Trans. Amer. Math. Soc. 290 (1985), 527-553. MR 792810 (87a:46063)
  • [5] W. C. Lang, A growth condition for Fourier coefficients of a function of bounded entropy norm, Proc. Amer. Math. Soc. 112 (1991), 433-439. MR 1045141 (91i:42005)
  • [6] A. Zygmund, Trigonometric series, 2nd ed., vol. I, Cambridge Univ. Press, Cambridge, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A16, 30D55, 42B30, 46E15

Retrieve articles in all journals with MSC: 42A16, 30D55, 42B30, 46E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1166359-1
Keywords: Entropy norm spaces, real Hardy space
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society