Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The characteristic exponent of second-order linear differential equations with two irregular singular points


Author: Wolfgang Bühring
Journal: Proc. Amer. Math. Soc. 118 (1993), 801-812
MSC: Primary 34A20
DOI: https://doi.org/10.1090/S0002-9939-1993-1169022-6
MathSciNet review: 1169022
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A second-order linear differential equation with two irregular singular points, of which one has unit rank, is investigated. A simple limit formula is obtained for the characteristic exponent of the multiplicative solutions as well as a more detailed asymptotic formula which is suitable for getting accurate numerical values. Only the recursively known coefficients of the formal power series solutions at the irregular singular point of unit rank enter our formulas.


References [Enhancements On Off] (What's this?)

  • [1] F. L. Hinton, Stokes multipliers for a class of ordinary differential equations, J. Math. Phys. 20 (1979), 2036-2046. MR 546768 (80m:34055)
  • [2] E. L. Ince, Ordinary differential equations, Dover, New York, 1956. MR 0010757 (6:65f)
  • [3] W. Jurkat, D. A. Lutz, and A. Peyerimhoff, Invariants and canonical forms for meromorphic second order differential equations, Proc. 2nd Scheveningen Conference on Differential Equations, Math. Studies, vol. 21, North-Holland, Amsterdam, 1976, pp. 181-187. MR 0454111 (56:12362)
  • [4] -, Birkhoff invariants and effective calculations for meromorphic linear differential equations. I, J. Math. Anal. 53 (1976), 438-470. MR 0399544 (53:3388a)
  • [5] -, Birkhoff invariants and effective calculations for meromorphic linear differential equations. II, Houston J. Math. 2 (1976), 207-238. MR 0399545 (53:3388b)
  • [6] T. Kurth and D. Schmidt, On the global representation of the solutions of second-order linear differential equations having an irregular singularity of rank one in $ \infty $ by series in terms of confluent hypergeometric functions, SIAM J. Math. Anal. 17 (1986), 1086-1103. MR 853518 (87j:34017)
  • [7] Y. L. Luke, The special functions and their approximations, Vol. 1, Academic Press, New York, 1969.
  • [8] R. Mennicken, On the convergence of infinite Hill-type determinants, Arch. Rational Mech. Anal. 30 (1968), 12-37. MR 0226832 (37:2419)
  • [9] R. Mennicken and E. Wagenführer, Über die Konvergenz verallgemeinerter Hillscher Determinanten, Math. Nachr. 72 (1976), 21-49. MR 0481709 (58:1808)
  • [10] F. W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974. MR 0435697 (55:8655)
  • [11] R. Schäfke and D. Schmidt, The connection problem for general linear ordinary differential equations at two regular singular points with applications in the theory of special functions, SIAM J. Math. Anal. 11 (1980), 848-862. MR 586913 (82a:34010a)
  • [12] E. Wagenführer, Die Determinantenmethode zur Berechnung des charakteristischen Exponenten der endlichen Hillschen Differentialgleichung, Numer. Math. 35 (1980), 405-420. MR 593836 (82e:34048)
  • [13] E. Wagenführer and H. Lang, Berechnung des charakteristischen Exponenten der endlichen Hillschen Differentialgleichung durch numerische Integration, Numer. Math. 32 (1979), 31-50. MR 525635 (80c:65162)
  • [14] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Univ. Press, London, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34A20

Retrieve articles in all journals with MSC: 34A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1169022-6
Keywords: Linear differential equations, characteristic exponent, characteristic index, Floquet exponent, irregular singular points
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society