Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on weighted Sobolev spaces, and regularity of commutators and layer potentials associated to the heat equation


Author: Steve Hofmann
Journal: Proc. Amer. Math. Soc. 118 (1993), 1087-1096
MSC: Primary 42A50; Secondary 35K05, 42B25, 47N20
DOI: https://doi.org/10.1090/S0002-9939-1993-1137222-7
MathSciNet review: 1137222
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a simplified proof of recent regularity results of Lewis and Murray, namely, that certain commutators, and the boundary single layer potential for the heat equation in domains in $ {\mathbb{R}^2}$ with time dependent boundary, map $ {L^p}$ into an appropriate homogeneous Sobolev space. The simplification is achieved by treating directly only the case $ p = 2$, but in a weighted setting.


References [Enhancements On Off] (What's this?)

  • [CF] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 0358205 (50:10670)
  • [CR] R. Coifman and R. Rochberg, Another characterization of $ BMO$, Proc. Amer. Math. Soc. 79 (1980), 249-254. MR 565349 (81b:42067)
  • [FS] C. Fefferman and E. M. Stein, $ {H^p}$ spaces of several variables, Acta Math. 129 (1971), 137-193. MR 0447953 (56:6263)
  • [GR] J. Carcia-Cuerva and J. L. Rubio de Francia, Weighted inequalities and related topics, North-Holland, Amsterdam, 1985.
  • [J] J. L. Journe, Calderon-Zygmund operators, pseudo-differential operators, and the Cauchy integral of Calderon, Lecture Notes in Math., vol. 994, Springer-Verlag, Berlin, 1983. MR 706075 (85i:42021)
  • [LM] J. L. Lewis and M. A. M. Murray, Regularity properties of commutators and layer potentials associated to the heat equation, Trans. Amer. Math. Soc. 328 (1991), 815-842. MR 1020043 (92c:35052)
  • [MW] B. Muckenhoupt and R. Wheeden, Norm inequalities for the Littlewood-Paley $ g_\lambda ^{\ast}$ function, Trans. Amer. Math. Soc. 191 (1974), 95-111. MR 0387973 (52:8810)
  • [M1] M. A. M. Murray, Commutators with fractional differentiation and $ BMO$ Sobolev spaces, Indiana Univ. Math. J. 34 (1985), 205-215. MR 773402 (86c:47042)
  • [M2] -, Multilinear singular integrals involving a derivative of fractional order, Studia Math. 87 (1987), 139-165. MR 928573 (89g:42020)
  • [S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [Stz] R. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), 539-558. MR 578205 (82f:46040)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A50, 35K05, 42B25, 47N20

Retrieve articles in all journals with MSC: 42A50, 35K05, 42B25, 47N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1137222-7
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society