FLAT CORE PROPERTIES ASSOCIATED TO THE p-LAPLACE OPERATOR

SHOSHANA KAMIN AND LAURENT VERON

(Communicated by Barbara L. Keyfitz)

Abstract. We study the formation of a flat hat pattern in the profile of the positive solution of an equation of the type: $\varepsilon \Delta_p u - u^{p-1}(1 - u)\theta = 0$ ($0 < \theta < p - 1$) in a bounded domain Ω. When ε tends to 0^+, the growth of the zone where $u = u_\varepsilon$ takes the value 1 in Ω is studied.

Introduction and statement of the results

This paper deals with the study of the limit behaviour when ε tends to 0^+ of the shape of the positive solution $u = u_\varepsilon$ of the problem

\begin{equation}
-\varepsilon \Delta_p u + f(u) = 0 \quad \text{in } \Omega,
\end{equation}

\begin{equation}
u = 0 \quad \text{on } \partial \Omega,
\end{equation}

where Ω is a connected, bounded open subset of \mathbb{R}^N, $N \geq 2$, with a C^2 boundary $\partial \Omega$; Δ_p is the p-Laplace operator defined by

\begin{equation}
\Delta_p u = \text{div}(\|\nabla u\|^{p-2}\nabla u)
\end{equation}

with $p > 1$; and f is continuous with nonpositive values. Such a problem appears when studying the stationary states of a strongly nonlinear heat equation in an absorbing-reacting media (see [D] for physical examples and further references). The precise hypotheses on f are the following:

(H1) f is continuous on $[0, \infty)$ and $r \mapsto f(r)/r^{p-1}$ is increasing.

(H2) $\lim_{r \to 0} f(r)/r^{p-1} = -1$.

(H3) There exist $C > 0$ and $\theta \in (0, p - 1)$ such that $\lim_{r \to 1} f(r)/(1 - r)^\theta = -C$.

The specific phenomenon we shall study is the formation of a flat hat pattern inside Ω, that is, a zone where u takes the value 1 and the growth of this zone when ε tends to 0.

The typical example of a function f satisfying (H1)-(H3) is $f(u) = u^{p-1} - u^q$, thus problem (1) becomes

\begin{equation}
-\varepsilon \Delta_p u = u^{p-1} - u^q \quad \text{in } \Omega,
\end{equation}

\begin{equation}
u = 0 \quad \text{on } \partial \Omega.
\end{equation}

Received by the editors May 6, 1991 and, in revised form, November 26, 1991.

1991 Mathematics Subject Classification. Primary 35J60, 35J70.
If we set $\varepsilon = 1/\lambda$ and $u = v\varepsilon^{1/(q+1-p)}$, then (3) reads as

$$-\Delta_p v = \lambda v^{p-1} - v^q \quad \text{in } \Omega,$$

$$v = 0 \quad \text{on } \partial \Omega.$$

The appearance of the flat zone for the solution of (4) for large λ was first observed by Guedda and Veron. These authors in [GV] studied the structure of the set of solutions of the nonlinear eigenvalue problem

$$-(d|x|^{-2}v_x)_x = \lambda d|v|^{p-2}v - |v|^{q-1}v \quad \text{in } (0,1),$$

$$v(0) = v(1) = 0.$$

It is proved in [GV] that for

$$q > p - 1 > 1$$

and λ large enough, the unique positive solution of (5) satisfies $v(x) = \lambda^{1/(q+1-p)}$ for $x \in [x(\lambda), 1 - x(\lambda)]$ where $x(\lambda) > 0$ and $x(\lambda) \sim C\lambda^{-1/p}$ at infinity. Another consequence described in [GV] is that for λ large enough, the set of solutions v of (5) with $k - 1$ simple zeros on $(0,1)$ and $v_x(0) > 0$ is homeomorphic to the $(k-1)$-dimensional unit cube. P. L. Lions asked one of the authors whether such phenomenon still existed for the N-dimensional case.

If we define

$$\lambda_1 = \min \left\{ \int_{\Omega} |\nabla u|^p \, dx / \int_{\Omega} |u|^p \, dx : u \in W^{1,p}_0(\Omega) \setminus \{0\} \right\},$$

it is a classical fact that under condition (6), for any $\lambda > \lambda_1$ there exists v positive in Ω satisfying (4). As for problem (1) we know from [DS] that if $\varepsilon < 1/\lambda_1$ and f satisfies (H1), (H2), then there exists a unique $u - u_\varepsilon$ belonging to $C^1(\overline{\Omega})$ which is a positive in Ω solution of (1). Moreover if (H3) holds then u takes its values in $[0, 1]$. If we define

$$\Omega_\lambda = \{ x \in \Omega : v(x) \equiv \lambda^{1/(q+1-p)} \}$$

then Ω_λ is a compact, possibly empty, subset of Ω. We have the following answer to Lions's question

\textbf{Theorem 1.} Assume (6), $\lambda > \lambda_1$, v is the positive solution of (4), and Ω_λ is defined by (8). Then there exists $\lambda^* = \lambda^*(\Omega, p, q)$ such that:

(i) if $\lambda < \lambda^*$ the set Ω_λ is empty;

(ii) if $\lambda \geq \lambda^*$ the set Ω_λ is not empty and

$$\text{dist}(\Omega_\lambda, \partial \Omega) \leq C\lambda^{-1/p},$$

where $C = C(\Omega, p, q) > 0$.

Theorem 1 is a consequence of

\textbf{Theorem 2.} Assume (H1)–(H3) with $p > 1$. Then for $\varepsilon > 0$ small enough the coincidence set Ω_ε of the solution u of (1) defined by

$$\Omega_\varepsilon = \{ x \in \Omega : u(x) = 1 \}$$

is not empty and there exists a constant $C > 0$ such that

$$\text{dist}(\Omega_\varepsilon, \partial \Omega) \leq Ce^{1/p}.$$
PROOFS OF THE RESULTS

We first extend the function \(f \) on \((-\infty, 0)\) such that the resulting function defined on \(R \) is a continuous odd function. This function is still denoted by \(f \).

Lemma 1. Let \(w_1 \) and \(w_2 \) be two functions belonging to \(C(\overline{\Omega}) \cap W^{1,p}(\Omega) \) and such that

\[
0 = w_1 \leq w_2 \quad \text{on } \partial \Omega
\]
and

\[
w_1 \leq w_2,
\]
\[
-\Delta_p w_1 + f(w_1) \leq 0,
\]
\[
-\Delta_p w_2 + f(w_2) \geq 0
\]
in \(\Omega \). Then there exists a function \(w \) in \(C_0(\Omega) \cap W^{1,p}(\Omega) \) satisfying

\[
w_1 \leq w \leq w_2,
\]
\[
-\Delta_p w + f(w) = 0
\]
in \(\Omega \).

This result is due to Deuel and Hess [DeH] and extends previous results of Amann, Sattinger, and others (see [A] for example).

Lemma 2. Let \(w \in C(\overline{\Omega}) \cap W^{1,p}_0(\Omega) \) be a positive solution of (17) in \(\Omega \). Then for \(C > 1 \) (resp. \(0 < C < 1 \)) we have

\[
-\Delta_p(Cw) + f(Cw) \geq 0 \quad \text{(resp. } -\Delta_p(Cw) + f(Cw) \leq 0)\] in \(\Omega \).

Proof. For \(C > 1 \) we have

\[
\Delta_p(Cw) = C^{p-1}\Delta_p w = C^{p-1}f(w) = (Cw)^{p-1}f(w)/w^{p-1}.
\]
From (H1) we have \(f(w)/w^{p-1} \leq f(Cw)/(Cw)^{p-1} \), which yields (18). The same proof applies for \(0 < C < 1 \).

Lemma 3. Assume (Hi) \((i = 1, 2, 3)\) and let \(u = u_\varepsilon \) be the positive solution of (9). Then \(u_\varepsilon \) converges to 1 as \(\varepsilon \) tends to 0, uniformly on any compact subset \(K \) of \(\Omega \).

Proof. By the maximum principle, \(u_\varepsilon \leq 1 \) in \(\overline{\Omega} \). The intent of this proof is to construct a subsolution \(v \) of (9) with the form

\[
v = 1 - e^{-\psi'/\varepsilon'}, \quad \varepsilon' = \varepsilon^{1/p},
\]

with some \(\psi > 0 \) in \(\Omega \), vanishing on \(\partial \Omega \); the function \(\psi \) will be made precise later. Then

\[
\nabla v = \frac{1}{\varepsilon'}e^{-\psi'/\varepsilon'} \nabla \psi
\]
and

\[
-\Delta_p v = (\varepsilon')^{-p}e^{-(p-1)\psi'/\varepsilon'} \{(p-1)|\nabla \psi|^p - \varepsilon'\Delta_p \psi\},
\]
which yields

\[
-\varepsilon\Delta_p v + f(v) = [(p-1)|\nabla \psi|^p - \varepsilon'\Delta_p \psi]e^{-(p-1)\psi'/\varepsilon'} + f(v).
\]
Set $E_1 = (p-1)|\nabla \psi|^p$, $E_2 = -\epsilon'\Delta_p \psi$, and $y = e^{-\psi/\epsilon'}$. We claim that for ϵ' small enough

$$E_1 + E_2 \leq -y^{1-p} f(1-y).$$

For $\delta > 0$ we define

$$\Omega^\delta_- = \{x \in \Omega : y \leq \delta\} = \{x \in \Omega : \psi \geq \epsilon' \ln(1/\delta)\},$$

$$\Omega^\delta_+ = \{x \in \Omega : y > \delta\} = \{x \in \Omega : \psi < \epsilon' \ln(1/\delta)\}.$$

From (H3) $\lim_{y \to 0^+} (-y^{-\theta} f(1-y)) = C$; henceforth there exists $\delta_0 \in (0, 1)$ such that $-y^{-\theta} f(1-y) > C/2$ for $0 < y < \delta_0$, which implies

$$-\frac{1}{y^{p-1}} f(1-y) > \frac{C}{2\delta^{p-1-\theta}} \quad \forall y \in (0, \delta_0)$$

as $p - 1 - \theta > 0$. We shall take $\psi = \phi_1^p$ where ϕ_1 is the unique positive solution with upper bound 1 of

$$-\Delta_p \phi_1 = \lambda_1 \phi_1^{p-1} \quad \text{in } \Omega,$$

$$\phi_1 = 0 \quad \text{on } \partial \Omega.$$

There exists $M > 0$ such that for any $\epsilon' \in (0, 1]$ we have

$$|(p-1)|\nabla \psi|^p - \epsilon'\Delta_p \psi| \leq M,$$

and there exists $\delta_1 \in (0, \delta_0]$ such that for $\delta < \delta_1$

$$(p-1)|\nabla \psi|^p - \epsilon'\Delta_p \psi \leq M \leq c/2\delta^{p-1-\theta}$$

in Ω, which implies that (22) holds in Ω^δ_-. For the estimate in Ω^δ_+ note that there exist two positive constants $l(\delta)$ and $r(\delta)$ such that

$$-f(1-y) \geq l(\delta)(1-y)^{p-1} \quad \forall y \in (\delta, 1)$$

and, consequently,

$$-f(1-y) \geq r(\delta)(\psi/\epsilon')^{p-1}$$

if $\delta < y \leq 1$ or $\psi/\epsilon' < \ln(1/\delta)$; we used here that $(1-e^{-p})/p$ is bounded below on $(0, \ln(1/\delta))$. In order to have

$$E_1 \leq -f(1-y)/y^{p-1}$$

in Ω^δ_+, it is sufficient to assure (with $y \leq 1$) that

$$(p-1)|\nabla \psi|^p \leq r(\delta)(\psi/\epsilon')^{p-1}$$

or, equivalently,

$$(\epsilon')^{p-1}|\nabla \psi|^p \leq \frac{r(\delta)}{p-1} \psi^{p-1}.$$

As $\psi = \phi_1^p$ we have

$$(\epsilon')^{p-1}|\nabla \psi|^p \psi^{1-p} = (\epsilon')^{p-1} p^p |\nabla \phi_1|^p.$$

For $\delta \in (0, \delta_1)$ fixed, we can choose $\epsilon'_0 > 0$ such that (31) holds for $0 < \epsilon' \leq \epsilon'_0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
For the remaining term we have
\[\Delta_p \psi = \Delta_p \phi_1^p = p^{p-1}(p - 1)^2 \phi_1^{p-1} |\nabla \phi_1|^p - \lambda_1 p^{p-1} \phi_1^{p-1} \cdot \]
As \(\partial \phi_1 / \partial \nu < 0 \) on \(\partial \Omega \) there exists a neighborhood \(D \) of \(\partial \Omega \) such that
\[(p - 1)^2 |\nabla \phi_1|^p > \lambda_1 \phi_1^{p-1} \cdot \]
in \(D \). For \(\delta \) fixed in \((0, \delta_1) \) there exists \(\varepsilon'_1 \in (0, \varepsilon'_0) \) such that for any \(\varepsilon' \in (0, \varepsilon'_1) \), \(\Omega^\varepsilon \subset D \). For such a limitation on \(\varepsilon' \) we have \(\Delta_p \psi > 0 \) in \(\Omega^\varepsilon \), which implies
\[E_1 + E_2 \leq -y^{1-p} f(1-y) \cdot \]
in \(\Omega^\delta \). Henceforth, with this restriction on \(\varepsilon' \), \(v \) satisfies
\[-\varepsilon' \Delta_p v + f(v) \leq 0 \cdot \]
in \(\Omega \) and \(v \) vanishes on \(\partial \Omega \). Now we compare \(u \) and \(v \). By Vazquez’s maximum principle [V], \(\partial u / \partial \nu < 0 \) on \(\partial \Omega \); therefore, there exists \(C > 1 \) such that \(Cu \geq v \) in \(\Omega \). Using Lemmas 2 and 1 we get that there exists a solution \(u^* \) of (9) such that \(v \leq u^* \leq Cu \). By uniqueness \(u^* = u \geq v \). For any compact subset \(K \subset \Omega \), there exists \(\eta(K) > 0 \) such that \(\psi \geq \eta(K) \) on \(K \). Letting \(\varepsilon \) tend to 0 implies the claimed result.

Proof of Theorem 2. Let \(\hat{u} = \hat{u}_\varepsilon = 1 - u \). From (H3) there exists \(\delta_0 > 0 \) such that \(-\hat{u}^{-\theta} f(1 - \hat{u}) > c/2 \) for \(0 < \hat{u} < \delta_0 \), which yields
\[-\Delta_p \hat{u} + \frac{c}{2} \hat{u}^\theta \leq 0 \cdot \]
if \(0 < \hat{u} \leq \delta_0 \). For \(\eta > 0 \) let \(K_\eta \) be the subset of the \(x \)'s in \(\Omega \) such that \(\text{dist}(x, \partial \Omega) \geq \eta \). From Lemma 3, for any \(\delta \in (0, \delta_0) \) there exists \(\varepsilon(\delta) > 0 \) such that for \(0 < \varepsilon < \varepsilon(\delta) \) we have
\[\max \{ \hat{u}_\varepsilon(x) : x \in K_\eta \} < \delta \cdot \]
Let \(h = h_\delta \) be the solution of
\[-\Delta_p h + \frac{c}{2} h^\theta = 0 \text{ in } B_\eta(0), \]
\[h = \delta \text{ on } \partial B_\eta(0). \]
We know from Diaz-Herrero’s paper [DH] (see also [D, p. 41]) that there exists \(\delta > 0 \) such that \(h_\delta(0) = 0 \). Let \(x_0 \in K_{2\eta} \). By comparison, \(\hat{u}(x) \leq h_\delta(x - x_0) \) for \(|x - x_0| < \eta \). Thus \(\hat{u}(x_0) = 0 \). Therefore \(\hat{u}(x) \equiv 0 \) on \(K_{2\eta} \).

In order to obtain the final estimate we use a local scaling argument. As \(\partial \Omega \) is \(C^2 \) there exists \(\rho > 0 \) such that for any \(a \in \partial \Omega \) the open ball with center \(a - \rho \vec{v}_a \) and radius \(\rho \) is included into \(\Omega \) (\(\vec{v}_a \) is the normal unit vector to \(\partial \Omega \) at \(a \)). As we already proved, there exists \(\varepsilon_1 > 0 \) such that the positive solution \(z \) of
\[-\varepsilon_1 \Delta_p z + f(z) = 0 \text{ in } B_\rho(0), \]
\[z = 0 \text{ on } \partial B_\rho(0), \]
is such that \(z(x) \equiv 1 \ \forall x \in B_{\rho/2}(0) \). For \(k > 0 \) the function \(z_k \) defined by \(z_k(x) = z(kx) \) satisfies
\[-\varepsilon_1 k^{-p} \Delta_p z_k + f(z_k) = 0 \text{ in } B_{\rho/k}(0), \]
\[z_k = 0 \text{ on } \partial B_{\rho/k}(0). \]
and is such that $z_k(x) \equiv 1 \forall x \in B_{p/2k}(0)$. For $0 < \varepsilon < \varepsilon_1$ let k be $(\varepsilon_1/\varepsilon)^{1/p}$, $k > 1$. For any $a \in \Omega$ such that $\text{dist}(a, \partial\Omega) \geq \rho/k$ we can compare $u(x)$ and $z_k(x-a)$ in $B_{p/k}(a)$. By the same way as in the proof of Lemma 3, we use Lemmas 2 and 1 with $\alpha > 0$ small enough. We get

$$\alpha z_k(x-a) \leq u(x) \quad \text{in } B_{p/k}(a),$$

which implies

$$z_k(x-a) \leq u(x) \quad \text{in } B_{p/k}(a).$$

We deduce that $u \equiv 1$ in $B_{p/2k}(a)$, which implies (11).

Remark 1. It is clear that the coincidence set Ω_ε may be empty if ε is too large. To have an estimate of this minimal ε we can proceed as follows: let $d > 0$ be the infimum of the distance of two hyperplanes that are parallel and such that Ω is contained into the strip limited by them. As the equation (9) is equivariant with respect to rotations and translations in \mathbb{R}^N, we can assume that

$$\Omega \subset \{x = (x_1, x') \in \mathbb{R} \times \mathbb{R}^{N-1} : 0 < x_1 < d\}.$$

Let $\tilde{\zeta}$ be the unique positive solution of

$$\begin{align*}
-\varepsilon(|\tilde{\zeta}_{x_1}|^{p-2}\tilde{\zeta}_{x_1})_{x_1} + f(\tilde{\zeta}) &= 0 \quad \text{in } (0, d), \\
\tilde{\zeta}(0) &= \tilde{\zeta}(d) = 0.
\end{align*}$$

It is clear that $\tilde{\zeta}(x) = \zeta(x_1)$ satisfies

$$\begin{align*}
-\varepsilon\Delta_p \tilde{\zeta} + f(\tilde{\zeta}) &= 0 \quad \text{in } \Omega, \\
\tilde{\zeta} &\geq 0 \quad \text{on } \partial\Omega.
\end{align*}$$

As before there exists a solution \tilde{u} such that for some $\alpha < 1$

$$\alpha u \leq \tilde{u} \leq \zeta$$

and by uniqueness $\tilde{u} = u \leq \zeta$. If $0 < \zeta < 1$ in $(0, d)$ we deduce that the coincidence set Ω_ε is empty. In the particular case of equation (1) the coincidence set is empty if

$$\lambda^{1/p} d(q-1)/(q+1-p)$$

and by uniqueness $\tilde{u} = u \leq \zeta$. If $0 < \zeta < 1$ in $(0, d)$ we deduce that the coincidence set Ω_ε is empty. In the particular case of equation (1) the coincidence set is empty if

$$\lambda^{1/p} d(q-1)/(q+1-p)$$

and by uniqueness $\tilde{u} = u \leq \zeta$. If $0 < \zeta < 1$ in $(0, d)$ we deduce that the coincidence set Ω_ε is empty. In the particular case of equation (1) the coincidence set is empty if

$$\lambda^{1/p} d(q-1)/(q+1-p)$$

[GV, Remark 2.3].

ACKNOWLEDGMENTS

This work was initiated while the second author was visiting Tel Aviv University in the framework of the Scientific Cooperation between France and Israel.

REFERENCES

School of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel

E-mail address: KAMIN@TAURUS.BITNET

Département de Mathématiques, Faculté des Sciences et Techniques, Parc de Grandmont, 37200 Tours, France

E-mail address: VERONL@FRUTRS51.BITNET