Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Logarithmic convexity of Perron-Frobenius eigenvectors of positive matrices


Author: Siddhartha Sahi
Journal: Proc. Amer. Math. Soc. 118 (1993), 1035-1036
MSC: Primary 15A48; Secondary 15A51
MathSciNet review: 1139482
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ C(S)$ be the cone of Perron-Frobenius eigenvectors of stochastic matrices that dominate a fixed substochastic matrix $ S$. For each $ 0 \leqslant \alpha \leqslant 1$, it is shown that if $ u$ and $ v$ are in $ C(S)$ then so is $ w$, where $ {w_j} = u_j^\alpha v_j^{1 - \alpha }$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A48, 15A51

Retrieve articles in all journals with MSC: 15A48, 15A51


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1139482-5
PII: S 0002-9939(1993)1139482-5
Keywords: Positive matrix, stochastic matrix, Perron-Frobenius eigenvector, convexity
Article copyright: © Copyright 1993 American Mathematical Society