Logarithmic convexity of Perron-Frobenius eigenvectors of positive matrices

Author:
Siddhartha Sahi

Journal:
Proc. Amer. Math. Soc. **118** (1993), 1035-1036

MSC:
Primary 15A48; Secondary 15A51

MathSciNet review:
1139482

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the cone of Perron-Frobenius eigenvectors of stochastic matrices that dominate a fixed substochastic matrix . For each , it is shown that if and are in then so is , where .

**[C]**Joel E. Cohen,*Convexity of the dominant eigenvalue of an essentially nonnegative matrix*, Proc. Amer. Math. Soc.**81**(1981), no. 4, 657–658. MR**601750**, 10.1090/S0002-9939-1981-0601750-2**[DN]**Emeric Deutsch and Michael Neumann,*On the first and second order derivatives of the Perron vector*, Linear Algebra Appl.**71**(1985), 57–76. MR**813033**, 10.1016/0024-3795(85)90235-6**[EJN]**L. Elsner, C. R. Johnson, and M. Neumann,*On the effect of the perturbation of a nonnegative matrix on its Perron eigenvector*, Czechoslovak Math. J.**32(107)**(1982), no. 1, 99–109. With a loose Russian summary. MR**646715****[F]**Shmuel Friedland,*Convex spectral functions*, Linear and Multilinear Algebra**9**(1980/81), no. 4, 299–316. MR**611264**, 10.1080/03081088108817381**[K]**J. F. C. Kingman,*A convexity property of positive matrices*, Quart. J. Math. Oxford Ser. (2)**12**(1961), 283–284. MR**0138632****[S]**E. Seneta,*Non-negative matrices*, Halsted Press [A division of John Wiley & Sons], New York, 1973. An introduction to theory and applications. MR**0389944****[SY]**Siddhartha Sahi and Shun Tian Yao,*The noncooperative equilibria of a trading economy with complete markets and consistent prices*, J. Math. Econom.**18**(1989), no. 4, 325–346. MR**1018983**, 10.1016/0304-4068(89)90010-4

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
15A48,
15A51

Retrieve articles in all journals with MSC: 15A48, 15A51

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1139482-5

Keywords:
Positive matrix,
stochastic matrix,
Perron-Frobenius eigenvector,
convexity

Article copyright:
© Copyright 1993
American Mathematical Society