Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On prime ideals in rings of semialgebraic functions


Author: J. M. Gamboa
Journal: Proc. Amer. Math. Soc. 118 (1993), 1037-1041
MSC: Primary 14P10; Secondary 14P05
DOI: https://doi.org/10.1090/S0002-9939-1993-1140669-6
MathSciNet review: 1140669
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if $ \mathfrak{p}$ is a prime ideal in the ring $ S(M)$ of semialgebraic functions on a semialgebraic set $ M$, the quotient field of $ S(M)/\mathfrak{p}$ is real closed. We also prove that in the case where $ M$ is locally closed, the rings $ S(M)$ and $ P(M)$--polynomial functions on $ M$--have the same Krull dimension. The proofs do not use the theory of real spectra.


References [Enhancements On Off] (What's this?)

  • [1] J. Bochnak, M. Coste, and M. F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3), vol. 12, Springer-Verlag, Berlin and New York, 1987. MR 949442 (90b:14030)
  • [2] M. Carral and M. Coste, Normal spectral spaces and their dimensions, J. Pure Appl. Algebra 301 (1983), 227-235. MR 724034 (85c:14002)
  • [3] J. M. Gamboa and J. M. Ruiz, On rings of semialgebraic functions, Math. Z. 206 (1991), 527-532. MR 1100836 (92f:14058)
  • [4] M. Henriksen and J. R. Isbell, On the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 4 (1953), 431-434. MR 0055664 (14:1107e)
  • [5] J. R. Isbell, More on the continuity of the real roots of an algebraic equation, Proc. Amer. Math. Soc. 5 (1954), 439. MR 0062425 (15:977d)
  • [6] T. Recio, Una descomposición de un conjunto semialgebraico, Proc. A.M.E.L. Mallorca, 1977.
  • [7] J. J. Risler, Le théoreme des zéros en géométries algébrique et analytique rélles, Bull. Soc. Math. France 104 (1976), 113-127. MR 0417167 (54:5226)
  • [8] J. M. Ruiz, Cônes locaux et complétions, C.R. Acad. Sci. Paris Sér. I Math. 302 (1986), 67-69. MR 832039 (87i:14005)
  • [9] N. Schwartz, The basic theory of real closed spaces, Mem. Amer. Math. Soc., no. 397, Amer. Math. Soc., Providence, RI, 1989. MR 953224 (90a:14032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14P10, 14P05

Retrieve articles in all journals with MSC: 14P10, 14P05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1140669-6
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society