Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Complemented subspaces and amenability: a counterexample


Author: Yuji Takahashi
Journal: Proc. Amer. Math. Soc. 118 (1993), 1113-1115
MSC: Primary 43A07; Secondary 43A15
DOI: https://doi.org/10.1090/S0002-9939-1993-1143024-8
MathSciNet review: 1143024
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a left amenable discrete semigroup $ S$ such that $ {l^\infty }(S)$ has weak$ ^{{\ast}}$-closed selfadjoint left translation invariant subalgebras that are weak$ ^{{\ast}}$-complemented but not invariantly complemented in $ {l^\infty }(S)$. This resolves negatively a problem raised by Lau.


References [Enhancements On Off] (What's this?)

  • [1] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol. I, 2nd ed., Springer-Verlag, Berlin, Heidelberg, and New York, 1979. MR 551496 (81k:43001)
  • [2] A. T. Lau, Invariantly complemented subspaces of $ {L^\infty }(G)$ and amenable locally compact groups, Illinois J. Math. 26 (1982), 226-235. MR 650390 (83g:43002)
  • [3] -, Amenability of semigroups, The Analytical and Topological Theory of Semigroups (K. H. Hofmann, J. D. Lawson, and J. S. Pym, eds.), Walter de Gruyter, Berlin and New York, 1990, pp. 313-334. MR 1072781 (91e:22002)
  • [4] A. T. Lau and V. Losert, Weak$ ^{{\ast}}$-closed complemented invariant subspaces of $ {L^\infty }(G)$ and amenable locally compact groups, Pacific J. Math. 123 (1986), 149-159. MR 834144 (87g:43001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A07, 43A15

Retrieve articles in all journals with MSC: 43A07, 43A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1143024-8
Keywords: Left amenable semigroup, complemented subspace, invariantly complemented subspace, weak$ ^{{\ast}}$-complemented subspace
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society