Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the divergence of Lagrange interpolation with equidistant nodes

Authors: X. Li and R. N. Mohapatra
Journal: Proc. Amer. Math. Soc. 118 (1993), 1205-1212
MSC: Primary 41A05
MathSciNet review: 1145421
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the optimal rate of divergence of Lagrange interpolation of $ f(x) = \vert x\vert$ at equidistant nodes.

References [Enhancements On Off] (What's this?)

  • [BMS] G. J. Byrne, T. M. Mills, and S. J. Smith, On Lagrange's interpolation with equidistant nodes, Bull. Austral. Math. Soc. 42 (1990), 81-89. MR 1066361 (92a:41001)
  • [D] P. J. David, Interpolation and approximation, Blaisdell, New York, 1965.
  • [GR] I. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, series, and products, Academic Press, New York, 1980.
  • [HW] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Oxford Univ. Press, Oxford, 1979. MR 568909 (81i:10002)
  • [IK] E. Issacson and H. B. Keller, Analysis of numerical methods, Wiley, New York, 1966. MR 0201039 (34:924)
  • [N] I. P. Natanson, Constructive function theory, Vol. III, Frederick Ungar, New York, 1965.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 41A05

Retrieve articles in all journals with MSC: 41A05

Additional Information

Keywords: Divergence, Lagrange interpolation
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society