Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Boundary behavior of generalized Poisson integrals for the half-space and the Dirichlet problem for the Schrödinger operator

Author: Alexander I. Kheifits
Journal: Proc. Amer. Math. Soc. 118 (1993), 1199-1204
MSC: Primary 31B25; Secondary 32J10
MathSciNet review: 1146864
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The boundary properties are investigated for the generalized Poisson integral

$\displaystyle u(X) = \int_{{\mathbb{R}^n}} {k(X,y)f(y)dy,} $

where $ X$ is a point of the upper half-space $ \mathbb{R}_ + ^{n + 1},\;f \in {L^{\mathbf{p}}}({\mathbb{R}^n}),\;1 \leqslant {\mathbf{p}} \leqslant \infty $ and the kernel $ k$ has some special properties. Our results imply the known boundary properties of the harmonic Poisson integrals on the half-space. As an application we derive a solution of the Dirichlet problem for the operator $ - \Delta + c(X),\;X \in \mathbb{R}_ + ^{n + 1}$, with boundary data $ f \in {L^{\mathbf{p}}}({\mathbb{R}^n})$.

References [Enhancements On Off] (What's this?)

  • [1] C. Fefferman and E. M. Stein, $ {{\mathbf{H}}^{\mathbf{p}}}$ spaces of several variables, Acta Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • [2] E. M. Stein, Singular integrals and differential properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)
  • [3] R. Johnson, Application of Carleson measures to partial differential equations and Fourier multiplier problems, Harmonic Analysis, Lecture Notes in Math., vol. 992, Springer-Verlag, Berlin, Heidelberg, New York, and Tokyo, 1983, pp. 16-72. MR 729345 (85f:42033)
  • [4] A. I. Kheifits, Subfunctions of the Schrödinger operator. 2, Rostov State Univ., Rostov-on-Don, 1989; RZhMat 1989: 4[ill]541Dep.
  • [5] -, Subfunctions of the Schrödinger operator. 3, Capacity and its Applications, Rostov State Univ., Rostov-on-Don, 1990; RZhMat 1990: 11[ill]383Dep.
  • [6] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 447-526. MR 670130 (86b:81001a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31B25, 32J10

Retrieve articles in all journals with MSC: 31B25, 32J10

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society