Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Nonregular extreme points in the set of Minkowski additive selections

Author: Krzysztof Przesławski
Journal: Proc. Amer. Math. Soc. 118 (1993), 1225-1226
MSC: Primary 52A20; Secondary 26B25
MathSciNet review: 1150653
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A function $ s:{\mathcal{K}^n} \to {\mathbb{R}^n}$, defined on the family $ {\mathcal{K}^n}$ of all compact convex and nonempty sets in $ {\mathbb{R}^n}$, is called a Minkowski additive selection, provided $ s(A + B) = s(A) + s(B)$ and $ s(A) \in A$, whenever $ A,\;B \in {\mathcal{K}^n}$. We confirm the conjecture [6] that there exist extremal selections which are not regular ($ s$ is regular if $ s\left( A \right) \in \operatorname{ext} A,\;A \in {\mathcal{K}^n}$).

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 52A20, 26B25

Retrieve articles in all journals with MSC: 52A20, 26B25

Additional Information

PII: S 0002-9939(1993)1150653-4
Keywords: Selections, convex sets, extremal points
Article copyright: © Copyright 1993 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia