NONREGULAR EXTREME POINTS IN THE SET OF MINKOWSKI ADDITIVE SELECTIONS

KRZYSZTOF PRZESŁAWSKI

(Communicated by William J. Davis)

Abstract. A function \(s: \mathcal{K}^n \to \mathbb{R}^n \), defined on the family \(\mathcal{K}^n \) of all compact convex and nonempty sets in \(\mathbb{R}^n \), is called a Minkowski additive selection, provided \(s(A + B) = s(A) + s(B) \) and \(s(A) \in A \), whenever \(A, B \in \mathcal{K}^n \). We confirm the conjecture [6] that there exist extremal selections which are not regular (\(s \) is regular if \(s(A) \in \text{ext}\ A \), \(A \in \mathcal{K}^n \)).

Let \(\mathcal{K}^n \) denote the family of all convex compact nonempty subsets of \(\mathbb{R}^n \). A mapping \(T: \mathcal{K}^n \to \mathbb{R}^n \) is called Minkowski additive, or simply additive, if \(T(A + B) = T(A) + T(B) \) for all \(A, B \in \mathcal{K}^n \). Let \(\mathcal{L}^n \) be the vector space of all additive mappings equipped with the weakest topology under which all evaluations \(\mathcal{L}^n \ni T \to T(A) \), \(A \in \mathcal{K}^n \), are continuous. It can be easily seen that the set \(\mathcal{S}^n \subseteq \mathcal{L}^n \) of all selections, i.e., the mappings having the property \(T(A) \in A \), is convex and compact. Let \(\mathcal{E}^n \) be the set of all extreme points of \(\mathcal{S}^n \). An element \(s \in \mathcal{S}^n \) is called regular if \(s(A) \in \text{ext}\ A \), where \(\text{ext}\ A \) denotes the set of all extremal points of \(A \). The set of all regular selections will be denoted by \(\mathcal{R}^n \). Obviously, if \(s \in \mathcal{R}^n \), then \(s \in \mathcal{E}^n \).

Zivaljević [6] conjectured that there exist nonregular extremal points in \(\mathcal{S}^n \). The following result confirms this supposition.

Theorem. For every \(n \geq 2 \), there exists a closed face of \(\mathcal{S}^n \) disjoint with \(\mathcal{R}^n \).

To prove the theorem, we shall need some additional notions and definitions. Let us define the support function \(h(A, x) \) of \(A \in \mathcal{K}^n \) at \(x \) as follows:

\[
h(A, x) = \sup \{ \langle a, x \rangle : a \in A \},
\]

where \(\langle \cdot, \cdot \rangle \) denotes the scalar product. By \(\Omega_k \) we denote the Stiefel manifold of \(k \)-frames; that is, the ordered \(k \)-tuples \(\omega = (x_1, \ldots, x_k) \) of orthonormal vectors in \(\mathbb{R}^n \). For \(\omega \in \Omega_k \), we define the \(\omega \)-face \(V_\omega(A) \) of \(A \) inductively: Let \(V_{x_1}(A) = \{ a \in A : \langle a, x_1 \rangle = h(A, x_1) \} \) and suppose that we have already defined \(V_{\omega'} \) for \(\omega' = (x_1, \ldots, x_{k-1}) \). Then \(V_\omega(A) = V_{x_1}(V_{\omega'}(A)) \). Subsequently, for \(V_{\omega'}(A) \), we define its position vector \(H_{\omega'}(A) \) as follows:

\[
H_{x_1}(A) = h(A, x_1)x_1, \quad H_{\omega'}(A) = H_{\omega'}(A) + h(V_{\omega'}(A), x_k)x_k.
\]

Received by the editors December 1, 1991.
1991 Mathematics Subject Classification. Primary 52A20; Secondary 52A07.
Key words and phrases. Selections, convex sets, extremal points.

© 1993 American Mathematical Society
0002-9939/93 $1.00 + .25 per page

1225
It was the main result of [6] that \(\mathcal{R}^n = \{ H_\omega : \omega \in \Omega_n \} \). Basic properties of the face mappings can be found in [2, 5].

Suppose now that \(A \in \mathcal{R}^2 \). Let us denote by \(s_0(A) \) the center of the smallest rectangle containing \(A \), which has its sides parallel to the coordinate axes. It is easy to observe that \(s_0(A) \in A \). Moreover, \(s_0(A) \) can be expressed by the formula

\[
s_0(A) = \frac{1}{2}(h(A, e_1) - h(A, -e_1))e_1 + \frac{1}{2}(h(A, e_2) - h(A, -e_2))e_2
\]

where \(e_1, e_2 \) denote vectors of the standard basis in \(\mathbb{R}^2 \). Obviously, \(s_0 \) is an additive selection on \(\mathcal{R}^2 \). This selection has already been mentioned in [1, 4].

Proposition. The minimal closed face of \(\mathcal{R}^2 \) containing \(s_0 \) is disjoint with \(\mathcal{R}^2 \).

Proof. For every pair \(e_1, e_2 \in \{-1, 1\} \), we define the triangle \(T(e_1, e_2) = \text{conv}\{0, e_1e_1, e_2e_2\} \). It is clear that \(s_0(T(e_1, e_2)) = (e_1e_1 + e_2e_2)/2 \). Hence for every selection \(s \) belonging to the minimal closed face containing \(s_0 \) we have

\[
(*) \quad s(T(e_1, e_2)) \in [e_1e_1, e_2e_2].
\]

On the other hand, it can be easily seen that no regular point \(H_\omega, \omega \in \Omega_2 \), can satisfy all the relations (*) resulting when \(e_1 \) and \(e_2 \) run over \(\{-1, 1\} \). \(\square \)

Proof of the theorem. Let us regard \(\mathbb{R}^2 \) as embedded into \(\mathbb{R}^n \) in an obvious manner. Let \(\omega \in \Omega_{n-2} \) consist of elements orthogonal to \(\mathbb{R}^2 \). It is clear that \(V_\omega(A) - H_\omega(A) \in \mathbb{R}^2 \) for every \(A \in \mathcal{R}^n \). Consequently, the following mapping is well defined:

\[
s_\omega(A) = s_0(V_\omega(A) - H_\omega(A)) + H_\omega(A).
\]

It is an easy exercise to prove that \(s_\omega \) is an additive selection on \(\mathcal{R}^n \). Furthermore, it follows from the proposition that the minimal face containing \(s_\omega \) is disjoint with \(\mathcal{R}^n \). \(\square \)

Question. Is it true that \(s_\omega \in \mathcal{E}^n \)?

For further information on the topic of extremal selections the reader is referred to the more extensive study [3].

References