BANACH ALGEBRAS WHICH ARE NOT WEDDERBURNIAN

BERTRAM YOOD

(Communicated by Palle E. T. Jorgensen)

Abstract. Let A be a Banach algebra with radical R. In 1951 Feldman exhibited an example in which it is impossible to find a closed subalgebra K of A such that $A = K \oplus R$. We provide other examples. Feldman's algebra is commutative, but these examples are, in general, not commutative.

1. Introduction

In [5, p. 85] Glaeser called a Banach algebra A Wedderburnian if A is the direct sum of its radical R and a closed subalgebra K of A. In [2] Bade and Curtis called such a Banach algebra strongly decomposable. If A is finite dimensional then a classical result of Wedderburn shows that A is Wedderburnian. In [4] Feldman provided an example where A is not Wedderburnian. This algebra was studied in detail in [1]. For another example see [5]. These examples are commutative. Our aim is to provide noncommutative examples which occur rather naturally. Some instances arise as follows. Let G be an infinite compact topological group with identity e. Let $C(G)$ be the set of all complex-valued continuous functions on G taken as an algebra with convolution as its multiplication. Let $\|f\|_2$ be the L^2-norm of $f \in C(G)$. The norm

$$\|f\|^2 = \max(\|f\|_2, |f(e)|)$$

is a normed algebra norm on $C(G)$. The completion A of $C(G)$ in this norm is not Wedderburnian. The Feldman example can be identified with the completion of the socle of $C(G)$, for G the reals modulo one, in the norm $\|f\|$.

Other examples arising from algebras of operators on Hilbert space are given. In particular, the completion of the trace class [9, p. 37] of Schatten in an appropriate norm is not Wedderburnian.

2. Preliminary theory

We adopt the following notation. Let B be a Banach algebra in the norm $\|x\|$ and E be a Banach space in the norm $\|\zeta\|_E$. Let T be a linear mapping of B into E satisfying

$$\|T(xy)\|_E \leq \|x\| \|y\|$$

Received by the editors December 2, 1991.

1991 Mathematics Subject Classification. Primary 46H10.
for all \(x, y \) in \(B \). We let \(A \) be the set of all elements of the form \(x + \xi \), where \(x \in B \) and \(\xi \in E \), made into an algebra under the rules \((x + \xi) + (y + \eta) = (x + y) + (\xi + \eta)\), \(a(x + \xi) = (ax + a\xi) \), and \((x + \xi)(y + \eta) = xy \) for all \(x, y \in B \), \(\xi, \eta \in E \), and scalars \(a \).

We define a norm on \(A \) by

\[
|||x + \xi||| = \max(||x||, ||\xi - T(x)||_E).
\]

In view of (1) we see that \(|||x + \xi|||\) is a normed algebra norm on \(A \).

2.1. **Lemma.** \(A \) is a Banach algebra in the norm \(|||x + \xi|||\).

Proof. Let \(\{x_n + \xi_n\} \) be a Cauchy sequence in \(A \). Then \(\{x_n\} \) is a Cauchy sequence in \(B \) and \(\{T(x_n) - \xi_n\} \) is a Cauchy sequence in \(E \). Hence there exists \(y \in B \) and \(\eta \in E \) where \(||x_n - y|| \to 0 \) and \(||T(x_n) - \xi_n - \eta||_E \to 0 \). One readily checks that, in \(A \), the sequence \(x_n + \xi_n \) has \(y + [T(y) - \eta] \) as its limit.

We denote the radical of \(A \) by \(R \).

2.2. **Lemma.** If \(B \) is semisimple then \(R = E \).

Proof. Clearly \(E \subset R \). Note that \(B \) is a two-sided ideal in \(A \). Therefore, \(R \cap B \) is the radical of \(B \) so that \(R \cap B = (0) \). Let \(x + \xi \in R \) where \(x \in B \) and \(\xi \in E \). Then \(x \in R \cap B \) so that \(x = 0 \).

2.3. **Lemma.** Suppose that \(T \) is discontinuous on a linear subspace \(W \) of \(B \). If \(E \) is finite dimensional then the closure of \(W \) in \(A \) must contain a nonzero element of \(E \).

Proof. There exists a sequence \(\{x_n\} \) in \(W \) where \(||x_n|| \to 0 \) and \(||T(x_n)||_E = 1 \) for each \(n = 1, 2, \ldots \). As \(E \) is finite dimensional, there is a subsequence \(\{y_n\} \) of \(\{x_n\} \) and some \(\xi \neq 0 \) in \(E \) such that \(||\xi - T(y_n)||_E \to 0 \). Then, since

\[
|||y_n + \xi||| = \max(||y_n||, ||\xi - T(y_n)||_E),
\]

we see that \(-\xi\) is in the closure of \(W \) in \(A \).

2.4. **Theorem.** Suppose that \(B \) is semisimple and that \(E \) is finite dimensional. Suppose that \(W \) is a two-sided ideal in \(B \) and that \(T \) is discontinuous on \(W^2 \). Then the completion \(V \) of \(W \) in the norm

\[
|||x||| = \max(||x||, ||T(x)||_E)
\]

is a Banach algebra which is not Wedderburnian.

Proof. By Lemma 2.1, \(V \) is just the closure of \(W \) in the Banach algebra \(A \). Also \(V \) is a two-sided ideal in \(A \) so that, by Lemma 2.2, the radical \(S \) of \(V \) is \(V \cap E \).

Suppose that \(V = K \oplus S \) where \(K \) is a subalgebra of \(V \). Since \(sv = vs = 0 \) for all \(s \in S \) and \(v \in V \), we have \(K \supseteq V^2 \supseteq W^2 \). Hence, by Lemma 2.3, the closure of \(K \) in \(V \) must contain a nonzero element of \(S \). Consequently \(V \) is not Wedderburnian.

3. **Examples from harmonic analysis**

Let \(G \) be an infinite compact topological group with identity \(e \) and normal-ized Haar measure \(m(E) \). We consider \(C(G) \) in the sup norm and \(L^2(G) \) in
the L^2-norm $\|f\|_2$ as Banach algebras with convolution $f * g$ as the multiplication. If f and g are in $L^2(G)$ then $f * g$ lies in $C(G)$ by [6, p. 295]. Therefore, the socle \mathcal{S} of $L^2(G)$ lies in $C(G)$, and \mathcal{S} is also the socle of $C(G)$. As $C(G)$ is a dual algebra [7, Theorem 15], \mathcal{S} is dense in $C(G)$ as well as $L^2(G)$.

We use the standard description of \mathcal{S} provided by the Peter-Weyl theorem. Let Λ be the set of equivalence classes of finite-dimensional irreducible representations of G. For each $\alpha \in \Lambda$ we select an irreducible unitary representation R^α in the class α. Suppose $R^\alpha(t)$ is the n_α by n_α matrix $(D^\alpha_{ij}(t))$. Then \mathcal{S} consists of all linear combinations of the functions D^α_{ij}, $\alpha \in \Lambda$, $i, j = 1, \ldots, n_\alpha$. The functions $n_\alpha^{1/2}D^\alpha_{ij}$ form an orthonormal basis for $L^2(G)$. Also $D^\alpha_{ij} * D^\beta_{rs} = 0$ if $\alpha \neq \beta$ and

$$n_\alpha D^\alpha_{ij} * n_\alpha D^\alpha_{rs} = n_\alpha \delta_{jr} D^\alpha_{is},$$

where δ_{jr} is the Kronecker delta.

Let \mathcal{D} be the set of all linear combinations of the “diagonal” entries D^α_{ii}, $\alpha \in \Lambda$, $i = 1, \ldots, n_\alpha$. The convolution of two different diagonal entries is zero and each D^α_{ii} is a scalar multiple of an idempotent. Therefore, \mathcal{D} is a commutative subalgebra of $C(G)$.

3.1. Lemma. Consider \mathcal{D} as a normed algebra in the L^2-norm $\|f\|_2$. Then the linear functional $f \rightarrow f(e)$ is discontinuous on \mathcal{D}.

Proof. Let

$$f = \sum_{k=1}^r k^{-1}D^\alpha_{ik}$$

be in \mathcal{D} where the D^α_{ik} are different diagonal entries. Then $f(e) = \sum_{k=1}^r k^{-1}$ and $\|f\|_2 = \sum_{k=1}^r k^{-2}n_\alpha^{-1/2}$.

3.2. Lemma. The closure of \mathcal{D} in either $C(G)$ or $L^2(G)$ is semisimple.

Proof. Note that $v = n^{1/2}D^\alpha_{ii}$ is an idempotent generator of a minimal one-sided ideal of $C(G)$ or $L^2(G)$. Let W be the closure of \mathcal{D} and z be in the radical of W. We have, as W is commutative, that $vz = vz = vzv$ is a scalar multiple of the idempotent v and is in the radical of W. Hence $D^\alpha_{ii} * z = 0$. It follows from (2) that $D^\alpha_{rs} * z = 0$ for all $\alpha \in \Lambda$ and $r, s = 1, \ldots, n_\alpha$. Hence $\mathcal{S} * z = z * \mathcal{S} = (0)$. Since \mathcal{S} is dense in $C(G)$ and $L^2(G)$ and these are semisimple, we see that $z = 0$.

3.3. Notation. The functional $f \rightarrow f(e)$ which is defined naturally on $C(G)$ can be extended to a linear functional $\phi(f)$ defined on $L^2(G)$ by [10, Theorem 1.71-A, p. 40].

3.4. Lemma. For any $f, g \in L^2(G)$ we have

$$|\phi(f * g)| \leq \|f\|_2\|g\|_2.$$

Proof. As noted earlier, $f * g \in C(G)$. Therefore,

$$|\phi(f * g)| = |f * g(e)| \leq \|f\|_2\|g\|_2$$

by Schwarz’s inequality.
3.5. Theorem. Let K be either the closure of \mathfrak{D} in $L^2(G)$ or any two-sided ideal of $L^2(G)$ containing \mathfrak{D}. Then the completion of K in the norm
\[||f|| = \max[||f||_2, |\phi(f)|] \]
is a Banach algebra which is not Wedderburnian.

Proof. Clearly $\mathfrak{D}^2 = \mathfrak{D}$. Theorem 3.5 follows from Lemmas 3.1, 3.2, and 3.4 together with Theorem 2.4. The special case $K = C(G)$ was mentioned in §1.

For the case $K = \mathfrak{D}$ we have a specific result.

3.6. Corollary. Let f be a typical element of \mathfrak{D} where
\[f = \sum_{k=1}^{r} a_k D_{i,j}^{\alpha,k}. \]
Here each a_k is a scalar and no two $D_{i,j}^{\alpha,k}$ agree in all of α, i, and j. Then the completion of \mathfrak{D} in the norm
\[||f|| = \max \left\{ \left(\sum_{k=1}^{r} |a_k|^2 / n_{\alpha_k} \right)^{1/2}, \left| \sum_{k=1}^{r} a_k \delta_{i,j} \right| \right\} \]
is not Wedderburnian.

Proof. We use Theorem 3.5 together with $D_{i,j}^{\alpha}(e) = \delta_{ij}$.

If G is abelian each $m_{\alpha} = 1$ and each $\delta_{i,j} = 1$. Here \mathfrak{D} is the set of linear combinations of the continuous characters of G.

3.7. Corollary. Let G be an abelian compact group whose character group \hat{G} is denumerably infinite: $\hat{G} = \{\gamma_1, \gamma_2, \ldots\}$. Then the completion of \mathfrak{D} in the norm
\[\left| \sum_{k=1}^{r} a_k \gamma_k \right| = \max \left\{ \left(\sum_{k=1}^{r} |a_k|^2 \right)^{1/2}, \left| \sum_{k=1}^{r} a_k \right| \right\} \]
is not Wedderburnian.

For G the reals modulo one we have, except for a difference in notation, the Feldman example [4].

4. Examples from Operator Theory

Let $B(H)$ be the algebra of all bounded linear operators on a separable infinite-dimensional Hilbert space H. Let $\{\phi_n\}$ be an orthonormal basis for H. As in Schatten's book [9] (see also [3, Chapter 1]) we consider the Schmidt class B_2 and the trace-class B_1 of operators on H. B_2 is the set of all $T \in B(H)$ for which $\sum_j ||T(\phi_j)||^2 < \infty$. This sum is finite and the same if $\{\phi_n\}$ is replaced by another orthonormal basis $\{\psi_n\}$. As shown in [9], B_2 is a Banach $*$-algebra in the norm
\[||T||_2 = \left(\sum_j ||T(\phi_j)||^2 \right)^{1/2}. \]

Also $||T||_2 = ||T^*||_2$ for all $T \in B_2$.
Let $|T|$ be the unique positive square root of T^*T. The trace-class B_1 is the set of all $T \in B(H)$ for which $\sum_j (|T|)(\phi_j),\phi_j)_j < \infty$. Again this sum is finite and the same if $\{\phi_n\}$ is replaced by another orthonormal basis $\{\psi_n\}$. As shown in [9], B_1 is a Banach $*$-algebra under the norm

$$\|T\|_1 = \sum_j (|T|)(\phi_j),\phi_j)_j.$$

Furthermore, B_1 is the set of all products TU for $T, U \in B_2$, and the elements of B_1 all have a finite trace

$$\text{tr}(U) = \sum_j (U(\phi_j),\phi_j)_j, \quad U \in B_1,$$

again independent of the choice of the orthonormal basis. By [10, 1.71-A, p. 40], $\text{tr}(U)$ can be extended to be a linear functional $TR(U)$ on all of B_2.

We note that (see [9]) the common socle of B_1 and B_2 is the set $F(H)$ of all $U \in B(H)$ with finite-dimensional range.

4.1. **Lemma.** For $U, V \in B_2$ we have

$$|TR(UV)| \leq \|U\|_2\|V\|_2.$$

Proof. As noted above, $UV \in B_1$. Therefore,

$$|TR(UV)| = \left| \sum_j (UV(\phi_j),\phi_j)_j \right| \leq \sum_j (|V(\phi_j),U^*(\phi_j))_j | \leq \sum_j \|V(\phi_j)\|\|U^*(\phi_j)\| \leq \|V\|_2\|U\|_2 = \|V\|_2\|U\|_2.$$

4.2. **Lemma.** $\text{tr}(U)$ is discontinuous on $F(H)$ if $F(H)$ is taken in the norm $\|U\|_2$.

Proof. For each positive integer n we define $W_n \in F(H)$ as follows. Let $W_n(\phi_j) = \phi_j/j$ for $j = 1, \ldots, n$ and $W_n(\phi_j) = 0$ for $j > n$. Then

$$\text{tr}(W_n) = \sum_{j=1}^n j^{-1} \quad \text{and} \quad \|W_n\|_2 = \sum_{j=1}^n j^{-2}.$$

4.3. **Theorem.** Let K be any two-sided ideal of B_2 which contains $F(H)$. The completion of K in the norm $\|V\| = \max(\|V\|_2, |TR(V)|)$ is not Wedderburnian.

Proof. Note that $F(H) = [F(H)]^2$. We can then use Lemmas 4.1 and 4.2 to apply Theorem 2.4. The particular case $K = B_1$ was noted in §1.

Consider the specific case $H = l_2$. Any $V \in B(l_2)$ can be described in matrix terms. There corresponds to V an infinite matrix $[v_{rs}]$ so that, for $x = \{x_n\}$ and $y = \{y_n\}$ in l_2, $V(x) = y$ if and only if

$$y_r = \sum_{s=1}^\infty v_{rs}x_s, \quad r = 1, 2, \ldots.$$
For V we have

$$\|V\|_2 = \left[\sum_j \sum_j |v_{jj}|^2 \right]^{1/2}, \quad \text{tr}(V) = \sum_j v_{jj}.$$

In these terms B_2 is the set of all $V \in B(l_2)$ for which $\sum_j \sum_i |v_{ij}|^2 < \infty$, and although there seems to be no simple description of B_1 in matrix terms (see [8, p. 107]), $F(l_2)$ is easily described as all $V \in B_2$ for which the column vectors of the matrix $[v_{rs}]$ lie in a finite-dimensional subspace of l_2.

4.4. Corollary. The completion of $F(l_2)$ in the normed algebra norm

$$\|\|V\|| = \max \left\{ \left[\sum_j \sum_i |v_{ij}|^2 \right]^{1/2}, \quad \left| \sum_j v_{jj} \right| \right\}$$

is not Wedderburnian.

ADDED IN PROOF

REFERENCES

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802