A proof of the existence of level elliptic cohomology

Author:
Mark A. Hovey

Journal:
Proc. Amer. Math. Soc. **118** (1993), 1331-1334

MSC:
Primary 55N22; Secondary 11F75

MathSciNet review:
1156469

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Landweber provided two proofs of the existence of (level 2) elliptic cohomology (Lecture Notes in Math., vol. 1326, Springer-Verlag, New York, 1988, pp. 69-93). As Baker pointed out (J. Pure Appl. Algebra **63** (1990), 1-11), one of these proofs gives a level 1 elliptic cohomology theory as well. In this note we provide an alternative proof of the existence of level 1 elliptic cohomology. The idea here is to use Landweber's direct proof of the existence of level 2 elliptic cohomology and an integrality argument to deduce the existence of level elliptic cohomology from that.

**[Bak1]**Andrew Baker,*Hecke operators as operations in elliptic cohomology*, J. Pure Appl. Algebra**63**(1990), no. 1, 1–11. MR**1037690**, 10.1016/0022-4049(90)90052-J**[Bak2]**-,*Elliptic genera of level**and elliptic cohomology*, preprint, 1991.**[Jac]**Nathan Jacobson,*Basic algebra. II*, W. H. Freeman and Co., San Francisco, Calif., 1980. MR**571884****[Land1]**Peter S. Landweber,*Homological properties of comodules over 𝑀𝑈_{∗}(𝑀𝑈) and BP_{∗}(BP)*, Amer. J. Math.**98**(1976), no. 3, 591–610. MR**0423332****[Land2]**Peter S. Landweber,*Supersingular elliptic curves and congruences for Legendre polynomials*, Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer, Berlin, 1988, pp. 69–93. MR**970282**, 10.1007/BFb0078039**[LRS]**Peter S. Landweber, Douglas C. Ravenel, and Robert E. Stong,*Periodic cohomology theories defined by elliptic curves*, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 317–337. MR**1320998**, 10.1090/conm/181/02040**[Rav]**Douglas C. Ravenel,*Complex cobordism and stable homotopy groups of spheres*, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR**860042**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55N22,
11F75

Retrieve articles in all journals with MSC: 55N22, 11F75

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1156469-7

Article copyright:
© Copyright 1993
American Mathematical Society