Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Topology of Milnor fibers of minimally elliptic singularities


Author: Lee J. McEwan
Journal: Proc. Amer. Math. Soc. 118 (1993), 1017-1027
MSC: Primary 32S50; Secondary 32S45, 32S55
DOI: https://doi.org/10.1090/S0002-9939-1993-1172960-1
MathSciNet review: 1172960
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Fundamental groups of Milnor fibers of some minimally elliptic singularities are computed via globalizations of smoothings. A conjecture of Looijenga-Wahl is verified for triangle singularities, which states that embedding dimension at most seven implies that any smoothing has simply-connected Milnor fiber.


References [Enhancements On Off] (What's this?)

  • [GS] G.-M. Greuel and J. H. M. Steenbrink, On the topology of smoothable singularities, Proc. Sympos. Pure Math., vol. 40, part 1, Amer. Math. Soc., Providence, RI, 1983, pp. 535-545. MR 713090 (84m:14006)
  • [K] K. Kodaira, On compact analytic surfaces. II, III. Ann. of Math. (2) 77 (1963), 563-626; 78 (1963), 1-40. MR 0184257 (32:1730)
  • [L1] E. Looijenga, The smoothing components of a triangle singularity. I, Proc. Sympos. Pure Math., vol. 40, part 2, Amer. Math. Soc., Providence, RI, 1983, pp. 173-184. MR 713246 (85e:14049)
  • [L2] -, The smoothing components of a triangle singularity. II, Math. Ann. 269 (1984), 357-387. MR 761312 (86d:14033)
  • [L3] -, Rational surfaces with an anti-canonical cycle, Ann. of Math. (2) 114 (1981), 267-322. MR 632841 (83j:14030)
  • [LW] E. Looijenga and J. Wahl, Quadratic functions and smoothing surfaces singularities, Topology 25 (1986), 261-291. MR 842425 (87j:32032)
  • [M] L. J. McEwan, Families of rational surfaces preserving a cusp singularity, Trans. Amer. Math. Soc. 321 (1990), 691-716. MR 968419 (91a:14019)
  • [MP] R. Miranda and U. Persson, Configurations of $ {I_n}$ fibers on elliptic $ K3$ surfaces, Math. Z. 201 (1989), 339-361. MR 999732 (90h:14051)
  • [P] H. Pinkham, Smoothings of the $ {D_{pqr}}$ singularities, $ p + q + r = 22$, Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 373-377. MR 713261 (85e:14050)
  • [S] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59. MR 0429918 (55:2927)
  • [SI] T. Shioda and H. Inose, On singular $ K3$ surfaces, Complex and Algebraic Geometry (papers dedicated to Kodaira) (W. L. Baily and T. Shioda, eds.), Cambridge Univ. Press, London, 1977.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32S50, 32S45, 32S55

Retrieve articles in all journals with MSC: 32S50, 32S45, 32S55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1172960-1
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society