Statistical limit points
Author:
J. A. Fridy
Journal:
Proc. Amer. Math. Soc. 118 (1993), 11871192
MSC:
Primary 40C99
MathSciNet review:
1181163
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Following the concept of a statistically convergent sequence , we define a statistical limit point of as a number that is the limit of a subsequence of such that the set does not have density zero. Similarly, a statistical cluster point of is a number such that for every the set does not have density zero. These concepts, which are not equivalent, are compared to the usual concept of limit point of a sequence. Statistical analogues of limit point results are obtained. For example, if is a bounded sequence then has a statistical cluster point but not necessarily a statistical limit point. Also, if the set has density one and is bounded on , then is statistically convergent.
 [1]
R.
Creighton Buck, The measure theoretic approach to density,
Amer. J. Math. 68 (1946), 560–580. MR 0018196
(8,255f)
 [2]
J.
S. Connor, The statistical and strong 𝑝Cesàro
convergence of sequences, Analysis 8 (1988),
no. 12, 47–63. MR 954458
(89k:40013)
 [3]
Jeff
Connor, 𝑅type summability methods,
Cauchy criteria, 𝑃sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), no. 2, 319–327. MR 1095221
(92i:40005), http://dx.doi.org/10.1090/S00029939199210952217
 [4]
H.
Fast, Sur la convergence statistique, Colloquium Math.
2 (1951), 241–244 (1952) (French). MR 0048548
(14,29c)
 [5]
J.
A. Fridy, On statistical convergence, Analysis
5 (1985), no. 4, 301–313. MR 816582
(87b:40001)
 [6]
J.
A. Fridy and H.
I. Miller, A matrix characterization of statistical
convergence, Analysis 11 (1991), no. 1,
59–66. MR
1113068 (92e:40001)
 [7]
L.
Kuipers and H.
Niederreiter, Uniform distribution of sequences,
WileyInterscience [John Wiley & Sons], New York, 1974. Pure and
Applied Mathematics. MR 0419394
(54 #7415)
 [8]
Ivan
Niven and Herbert
S. Zuckerman, An introduction to the theory of numbers, 4th
ed., John Wiley & Sons, New YorkChichesterBrisbane, 1980. MR 572268
(81g:10001)
 [9]
I.
J. Schoenberg, The integrability of certain functions and related
summability methods., Amer. Math. Monthly 66 (1959),
361–375. MR 0104946
(21 #3696)
 [10]
A. Zygmund, Trigonometric series, 2nd ed., vol. II, Cambridge Univ. Press, London and New York, 1979.
 [1]
 R. C. Buck, The measure theoretic approach to density, Amer. J. Math. 68 (1946), 560580. MR 0018196 (8:255f)
 [2]
 J. S. Connor, The statistical and strong Cesáro convergence of sequences, Analysis 8 (1988), 4763. MR 954458 (89k:40013)
 [3]
 , type summability methods, Cauchy criteria, sets, and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), 319327. MR 1095221 (92i:40005)
 [4]
 H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241244. MR 0048548 (14:29c)
 [5]
 J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301313. MR 816582 (87b:40001)
 [6]
 J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, Analysis 11 (1991), 5966. MR 1113068 (92e:40001)
 [7]
 L. Kupers and M. Niederreiter, Uniform distribution of sequences, Wiley, New York, 1974. MR 0419394 (54:7415)
 [8]
 I. Niven and H. S. Zuckerman, An introduction to the theorem of numbers, 4th ed., Wiley, New York, 1980. MR 572268 (81g:10001)
 [9]
 I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361375. MR 0104946 (21:3696)
 [10]
 A. Zygmund, Trigonometric series, 2nd ed., vol. II, Cambridge Univ. Press, London and New York, 1979.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
40C99
Retrieve articles in all journals
with MSC:
40C99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199311811636
PII:
S 00029939(1993)11811636
Keywords:
Natural density,
statistically convergent sequence
Article copyright:
© Copyright 1993 American Mathematical Society
