Statistical limit points

Author:
J. A. Fridy

Journal:
Proc. Amer. Math. Soc. **118** (1993), 1187-1192

MSC:
Primary 40C99

DOI:
https://doi.org/10.1090/S0002-9939-1993-1181163-6

MathSciNet review:
1181163

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Following the concept of a statistically convergent sequence , we define a statistical limit point of as a number that is the limit of a subsequence of such that the set does not have density zero. Similarly, a statistical cluster point of is a number such that for every the set does not have density zero. These concepts, which are not equivalent, are compared to the usual concept of limit point of a sequence. Statistical analogues of limit point results are obtained. For example, if is a bounded sequence then has a statistical cluster point but not necessarily a statistical limit point. Also, if the set has density one and is bounded on , then is statistically convergent.

**[1]**R. C. Buck,*The measure theoretic approach to density*, Amer. J. Math.**68**(1946), 560-580. MR**0018196 (8:255f)****[2]**J. S. Connor,*The statistical and strong*-*Cesáro convergence of sequences*, Analysis**8**(1988), 47-63. MR**954458 (89k:40013)****[3]**-, -*type summability methods, Cauchy criteria*, -*sets, and statistical convergence*, Proc. Amer. Math. Soc.**115**(1992), 319-327. MR**1095221 (92i:40005)****[4]**H. Fast,*Sur la convergence statistique*, Colloq. Math.**2**(1951), 241-244. MR**0048548 (14:29c)****[5]**J. A. Fridy,*On statistical convergence*, Analysis**5**(1985), 301-313. MR**816582 (87b:40001)****[6]**J. A. Fridy and H. I. Miller,*A matrix characterization of statistical convergence*, Analysis**11**(1991), 59-66. MR**1113068 (92e:40001)****[7]**L. Kupers and M. Niederreiter,*Uniform distribution of sequences*, Wiley, New York, 1974. MR**0419394 (54:7415)****[8]**I. Niven and H. S. Zuckerman,*An introduction to the theorem of numbers*, 4th ed., Wiley, New York, 1980. MR**572268 (81g:10001)****[9]**I. J. Schoenberg,*The integrability of certain functions and related summability methods*, Amer. Math. Monthly**66**(1959), 361-375. MR**0104946 (21:3696)****[10]**A. Zygmund,*Trigonometric series*, 2nd ed., vol. II, Cambridge Univ. Press, London and New York, 1979.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
40C99

Retrieve articles in all journals with MSC: 40C99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1181163-6

Keywords:
Natural density,
statistically convergent sequence

Article copyright:
© Copyright 1993
American Mathematical Society