Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Local isogeny theorem for Drinfeld modules with nonintegral invariants

Authors: Sunghan Bae and Pyung-Lyun Kang
Journal: Proc. Amer. Math. Soc. 119 (1993), 19-25
MSC: Primary 11G09; Secondary 14F30
MathSciNet review: 1145411
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An isogeny theorem for the Drinfeld modules of rank $ 2$ over a local field analogous to that of elliptic curves is proved.

References [Enhancements On Off] (What's this?)

  • [1] S. Bae and P. L. Kang, On Tate-Drinfeld modules, Canad. Math. Bull. (to appear). MR 1165161 (93b:11073)
  • [2] E. Gekeler, Zur Arithmetik von Drinfeld Moduln, Math. Ann. 262 (1983), 167-182. MR 690193 (84j:12010)
  • [3] -, On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988), 667-700. MR 952287 (89g:11043)
  • [4] D. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91. MR 0330106 (48:8444)
  • [5] S. Lang, Isogenous generic elliptic curves, Amer. J. Math. 94 (1972), 861-874. MR 0476765 (57:16320)
  • [6] -, Elliptic functions, 2nd ed, Graduate Texts in Math., vol. 112, Springer, New York, Berlin, and Heidelberg, 1987. MR 890960 (88c:11028)
  • [7] J. P. Serre, Abelian $ \ell $-adic representations and elliptic curves, Benjamin, New York and Amsterdam, 1968. MR 0263823 (41:8422)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11G09, 14F30

Retrieve articles in all journals with MSC: 11G09, 14F30

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society