Existence of a nontrivial solution to a strongly indefinite semilinear equation

Authors:
B. Buffoni, L. Jeanjean and C. A. Stuart

Journal:
Proc. Amer. Math. Soc. **119** (1993), 179-186

MSC:
Primary 35J60; Secondary 35Q99, 45K05, 47H15, 47N20

MathSciNet review:
1145940

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Under general hypotheses, we prove the existence of a nontrivial solution for the equation , where belongs to a Hilbert space , is an invertible continuous selfadjoint operator, and is superlinear. We are particularly interested in the case where is strongly indefinite and is not compact. We apply the result to the Choquard-Pekar equation

**[1]**Stanley Alama and Yan Yan Li,*Existence of solutions for semilinear elliptic equations with indefinite linear part*, J. Differential Equations**96**(1992), no. 1, 89–115. MR**1153310**, 10.1016/0022-0396(92)90145-D**[2]**Haïm Brezis and Louis Nirenberg,*Remarks on finding critical points*, Comm. Pure Appl. Math.**44**(1991), no. 8-9, 939–963. MR**1127041**, 10.1002/cpa.3160440808**[3]**Boris Buffoni and Louis Jeanjean,*Minimax characterization of solutions for a semi-linear elliptic equation with lack of compactness*, Ann. Inst. H. Poincaré Anal. Non Linéaire**10**(1993), no. 4, 377–404 (English, with English and French summaries). MR**1246458****[4]**-,*Bifurcation from the spectrum towards regular value*, preprint.**[5]**Hans-Peter Heinz,*Lacunary bifurcation for operator equations and nonlinear boundary value problems on 𝑅^{𝑁}*, Proc. Roy. Soc. Edinburgh Sect. A**118**(1991), no. 3-4, 237–270. MR**1121666**, 10.1017/S0308210500029073**[6]**-,*Existence and gap-bifurcation of multiple solutions to certain nonlinear eigenvalue problems finalinfo preprint*.**[7]**H.-P. Heinz, T. Küpper, and C. A. Stuart,*Existence and bifurcation of solutions for nonlinear perturbations of the periodic Schrödinger equation*, J. Differential Equations**100**(1992), no. 2, 341–354. MR**1194814**, 10.1016/0022-0396(92)90118-7**[8]**H.-P. Heinz and C. A. Stuart,*Solvability of nonlinear equations in spectral gaps of the linearization*, Nonlinear Anal.**19**(1992), no. 2, 145–165. MR**1174464**, 10.1016/0362-546X(92)90116-V**[9]**Tassilo Küpper and Charles A. Stuart,*Bifurcation into gaps in the essential spectrum*, J. Reine Angew. Math.**409**(1990), 1–34. MR**1061517**, 10.1007/978-94-009-0659-4_32**[10]**-,*Bifurcation into gaps in the essential spectrum*, 2, Nonlinear Anal. T.M.A. (to appear).**[11]**Tassilo Küpper and Charles A. Stuart,*Gap-bifurcation for nonlinear perturbations of Hill’s equation*, J. Reine Angew. Math.**410**(1990), 23–52. MR**1068798****[12]**P.-L. Lions,*The concentration-compactness principle in the calculus of variations. The locally compact case. I*, Ann. Inst. H. Poincaré Anal. Non Linéaire**1**(1984), no. 2, 109–145 (English, with French summary). MR**778970****[13]**P.-L. Lions,*The concentration-compactness principle in the calculus of variations. The locally compact case. II*, Ann. Inst. H. Poincaré Anal. Non Linéaire**1**(1984), no. 4, 223–283 (English, with French summary). MR**778974**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35J60,
35Q99,
45K05,
47H15,
47N20

Retrieve articles in all journals with MSC: 35J60, 35Q99, 45K05, 47H15, 47N20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1145940-X

Keywords:
Semilinear equation,
Choquard-Pekar equation,
strongly indefinite operator,
lack of compactness

Article copyright:
© Copyright 1993
American Mathematical Society