Integrability of reciprocals of the Green's function for elliptic operators: counterexamples

Author:
M. Cristina Cerutti

Journal:
Proc. Amer. Math. Soc. **119** (1993), 125-134

MSC:
Primary 35J25; Secondary 35B65, 35C15

MathSciNet review:
1145941

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct examples of elliptic operators for which the set of points where the reciprocal of the Green's function is not locally integrable in a dense set of points.

**[1]**A. D. Aleksandrov,*Uniqueness conditions and bounds for the solution of the Dirichlet problem*, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom.**18**(1963), no. 3, 5–29 (Russian, with English summary). MR**0164135****[2]**Patricia Bauman,*Positive solutions of elliptic equations in nondivergence form and their adjoints*, Ark. Mat.**22**(1984), no. 2, 153–173. MR**765409**, 10.1007/BF02384378**[3]**Patricia Bauman,*A Wiener test for nondivergence structure, second-order elliptic equations*, Indiana Univ. Math. J.**34**(1985), no. 4, 825–844. MR**808829**, 10.1512/iumj.1985.34.34045**[4]**Luis Caffarelli,*Elliptic second order equations*, Rend. Sem. Mat. Fis. Milano**58**(1988), 253–284 (1990). MR**1069735**, 10.1007/BF02925245**[5]**M. C. Cerutti, L. Escauriaza, and E. B. Fabes,*Uniqueness for the Dirichlet problem for some elliptic operators with discontinuous coefficients*, Ann. Mat. Pura Appl. (to appear).**[6]**Lawrence C. Evans,*Some estimates for nondivergence structure, second order elliptic equations*, Trans. Amer. Math. Soc.**287**(1985), no. 2, 701–712. MR**768735**, 10.1090/S0002-9947-1985-0768735-5**[7]**E. Fabes and D. Strook,*The*-*integrability of Green's functions and fundamental solutions for elliptic and parabolic equations*, Duke Math. J.**51**(1984), 977-1016.**[8]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[9]**Fang-Hua Lin,*Second derivative 𝐿^{𝑝}-estimates for elliptic equations of nondivergent type*, Proc. Amer. Math. Soc.**96**(1986), no. 3, 447–451. MR**822437**, 10.1090/S0002-9939-1986-0822437-1**[10]**Bernt Øksendal,*Dirichlet forms, quasiregular functions and Brownian motion*, Invent. Math.**91**(1988), no. 2, 273–297. MR**922802**, 10.1007/BF01389369**[11]**Carlo Pucci,*Limitazioni per soluzioni di equazioni ellittiche*, Ann. Mat. Pura Appl. (4)**74**(1966), 15–30 (Italian, with English summary). MR**0214905****[12]**M. V. Safonov,*Harnack’s inequality for elliptic equations and Hölder property of their solutions*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**96**(1980), 272–287, 312 (Russian). Boundary value problems of mathematical physics and related questions in the theory of functions, 12. MR**579490**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35J25,
35B65,
35C15

Retrieve articles in all journals with MSC: 35J25, 35B65, 35C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1145941-1

Article copyright:
© Copyright 1993
American Mathematical Society