THE HAYMAN-WU CONSTANT

KNUT ØYMA

(Communicated by Clifford J. Earle, Jr.)

Abstract. The Hayman-Wu constant is at least π^2.

Let D be the open unit disc and T its boundary. The length of a curve K is denoted $|K|$. The Hayman-Wu theorem says that there is a constant C such that if $f(z)$ is univalent in D and L is any line then $|f^{-1}(L)| \leq C$ (see [3]). The Hayman-Wu constant is the least possible value of C. Its numerical value is unknown, but in [4] it is proved that $C \leq 4\pi$. It has been conjectured that $C = 8 \int_0^1 dx/\sqrt{1 + x^4}$ (see [1]); however, we will prove

Theorem. $C \geq \pi^2$.

Flinn proved in [2] that if $f(D)$ contains one component of $C \setminus L$ then $|f^{-1}(L)| \leq \pi^2$. Our example shows that this is the best possible result in this case. The proof uses an elementary fact about harmonic measure: If I is a subarc of T and $0 < c < 1$ then the level curve $\omega(z, I, D) = c$ is a circular arc through the endpoints of I meeting $T \setminus I$ at an angle of $c\pi$.

Let Π^+ and Π^- be the upper and lower half planes respectively. If I is an interval of the real line and $0 < \varepsilon < 1$ then let $C_{I, \varepsilon}$ be the circle centered in Π^+ meeting \mathbb{R} at the endpoints of I such that the (least) angle between $C_{I, \varepsilon}$ and \mathbb{R} is ε. We define $C_{I, \varepsilon} \cap \Pi^+ = S_{I, \varepsilon}$. Let $\Omega_{I, \varepsilon}$ be the unbounded component of $C \setminus (S_{I, \varepsilon} \cup S_{I, \varepsilon}/2)$. Two lemmas are needed.

Lemma 1. For $z \in I$, $\omega(z) = \omega(z, S_{I, \varepsilon}, \Omega_{I, \varepsilon}) < \frac{1}{2} + \varepsilon$.

Proof. Without loss of generality I equals $[0, 1]$. If we use the transformation $g(z) = 1/ze - 1$, we may assume that $\Omega_{I, \varepsilon} = \{ re^{i\phi} : r > 0, -\pi + \varepsilon < \phi < \pi + \varepsilon/2 \}$ and that $I = \mathbb{R}^+$. Then $\omega(z)$ is given by the formula

$$\omega(re^{i\phi}) = (\pi + \varepsilon/2 - \phi)/(2\pi - \varepsilon/2).$$

Therefore, $\omega(z) = (\pi + \varepsilon/2)/(2\pi - \varepsilon/2) < \frac{1}{2} + \varepsilon$ for $z \in \mathbb{R}^+$.

Lemma 2. For every $\delta > 0$ there exist numbers $b > 0$ and $\varepsilon > 0$ such that if I is a subarc of T of length less than b and K is a crosscut in D connecting

\[\text{License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use}\]
the endpoints of \(I \) satisfying \(\omega(z, I, D) < \frac{1}{2} + \varepsilon \) for every \(z \in K \), then \(|K| > |I|(1 - \delta)\pi/2 \).

Proof. \(K \) lies outside the convex curve \(\omega(z, I, D) = \frac{1}{2} + \varepsilon \). If \(|I|\) and \(\varepsilon\) are small then this curve is almost a half circle whose diameter is almost \(|I|\). A routine but tedious calculation shows that

\[
|\omega(z, I, D)| = \frac{1}{2} + \varepsilon > (\sin(|I|/2))(\pi - |I| - 2\varepsilon \pi).
\]

Proof of the theorem. If \(\delta > 0 \) choose \(\varepsilon \) as in Lemma 2. Define \(I^1_0 = [0, 1] \) and \(d = \text{diam}(C_{I^1_0, \varepsilon/2}) \). For \(k \in \mathbb{Z} \) let \(I^1_k = I^1_0 + 2kd \). The circles \(C_{I^1_k, \varepsilon/2} \) are disjoint. Let \(\mathbb{R} \setminus \bigcup I^1_k = \bigcup J^1_m \), where the intervals \(J^1_m \) are disjoint. Choose closed intervals \(I^2_n \subseteq \bigcup J^1_k \) such that:

1. \(S_{I^2_n, \varepsilon/2} \cap S_{I^2_m, \varepsilon/2} = \emptyset \) for \(m \neq n \);
2. \(S_{I^2_n, \varepsilon/2} \cap S_{I^2_m, \varepsilon/2} = \emptyset \) for all \(m, n \);
3. Each compact subset of \(C \) intersects only finitely many \(I^2_k \);
4. \(|\bigcup I^2_k \cap J^1_m| > |J^1_m|/3d\) for all \(m \).

We can obtain (iv) by choosing each \(I^2_k \) small. Let \(\mathbb{R} \setminus (\bigcup J^2_k \cup I^2_n) = \bigcup J^2_n \). Continue the construction inductively.

Renumber the set \(\{I^2_n\} = \{I_n\} \). Define \(S_n = S_{I_n, \varepsilon} \) and let \(O_n \) be the inside of \(C_{I_n, \varepsilon} \). Define \(\Omega = (\bigcup O_n) \cup \Pi^- \). The domain \(\Omega \) is simply connected and the boundary of \(\Omega \) equals \((\bigcup S_n) \cup E \) where \(E \subset \mathbb{R} \). This is a Jordan arc, which is locally rectifiable since \(|S_n|/|I_n| \) constant. Therefore \(\omega(z, E, \Omega) \equiv 0 \) since \(|E| = 0 \) by (iv). It follows that if \(f(z) \) maps \(D \) conformally onto \(\Omega \) then

\[
\sum |f^{-1}(S_n)| = 2\pi.
\]

By comparison \(\omega_n(z) = \omega(z, S_n, \Omega) < \omega(z, S_n, \Omega_{I_n, \varepsilon}) \). Therefore, by Lemma 1, \(\omega_n(z) < \frac{1}{2} + \varepsilon \) for \(z \in I_n \). Choose \(f(z) \) such that \(f(0) = -ia \) where \(a \) is so large that \(\omega_n(-ia) < b \) for all \(n \). The constant \(b \) comes from Lemma 2. \(f^{-1}(I_n) \) is a crosscut in \(D \) connecting the endpoints of \(f^{-1}(S_n) \).

Lemma 2 shows that \(|f^{-1}(I_n)| > |f^{-1}(S_n)|(1 - \delta)\pi/2 \). This proves the theorem since

\[
|f^{-1}(\mathbb{R})| = \sum |f^{-1}(I_n)| \geq \sum |f^{-1}(S_n)|(1 - \delta)\pi/2 = \pi^2(1 - \delta).
\]

Conjecture. \(C = \pi^2 \).

Acknowledgment

I want to thank the referee for suggesting a better proof of Lemma 1.

References

Department of Mathematics, Agder College, 4604 Kristiansand, Norway