VANISHING THEOREMS FOR SINGULAR VARIETIES

KYUNGHO OH

(Communicated by Eric M. Friedlander)

Abstract. We give generalizations of Ramanujam’s version of the Kodaira Vanishing Theorem to singular varieties.

In this note, we give generalizations of the Kodaira Vanishing Theorem to singular varieties. Let X be an n-dimensional Cohen-Macaulay projective variety over \mathbb{C} and L be a line bundle on X. For $s \in V = H^0(X, L^m)$, $s \neq 0$, let D_s be the zero-scheme of s, a Cartier divisor on X. Let $B = \bigcap_{s \in V - \{0\}} D_s$ be the base locus of the linear system V. Then, there is a rational map $\phi_{L^m} : X \to \mathbb{P}(V^*)$ defined outside B by sending x to the hyperplane of divisors containing x.

Theorem 1. Let X, L, and ϕ_{L^m} be as above and B be the base locus of the linear system $H^0(X, L^m)$. Suppose that the dimension of the image of X under the map ϕ_{L^m} is at least k. Then

$$H^i(X, \omega_X \otimes L) = 0 \quad \text{for } i > \max(n - k, \dim B, \dim \text{Sing}(X)),$$

where $\text{Sing}(X)$ denotes the singular locus of X.

Remark 1. When X is a nonsingular projective variety over \mathbb{C}, this was proved by Ramanujam [R, Theorem 3].

Proof. First of all, we reduce the case to $m = 1$ using a finite covering of X. By Bertini’s Theorem, there is a basis $\{s_0, \ldots, s_r\}$ of the complete linear system $H^0(X, L^m)$ such that the zero-scheme D_{s_i} of s_i is smooth outside the union of B and $\text{Sing}(X)$ for $i = 0, \ldots, r$. Now we construct a tower of cyclic coverings inductively. We set $Y_{-1} = X$ and τ_{-1} to be the identity map on X. The section $\tau_{j-1}^*(s_j)$ of $\tau_{j-1}^*(L^m)$ defines a structure of an $\mathcal{O}_{Y_{j-1}}$-algebra on $\bigoplus_{i=0}^{m-1} \tau_{j-1}^* L^{-i}$. The natural map

$$\sigma_j : Y_j = \text{Spec}_{Y_{j-1}} \left(\bigoplus_{i=0}^{m-1} \tau_{j-1}^* L^{-i} \right) \to Y_{j-1}$$

Received by the editors January 13, 1992.

1991 Mathematics Subject Classification. Primary 14F17, 32L20.

©1993 American Mathematical Society
0002-9939/93 $1.00 + .25 per page
gives an m-fold cyclic covering map of Y_{j-1}. Let
\[\tau_j = \sigma_j \circ \tau_{j-1} : Y_j \to X \]
be the composition map and $\tau = \tau_r$. Then Y_r will be smooth outside the
inverse image $\tau^{-1}(B \cup \text{Sing}(X))$. In particular, the maximum of the dimensions
of B and $\text{Sing}(X)$ will be preserved under the map τ. Also note that τ^*L
possesses sections t_0, \ldots, t_r such that $t^m = \tau^*(s_i)$ in τ^*L^m. Thus the field
$\mathbb{C}(t_1/t_0, \ldots, t_r/t_0)$ is algebraic over the function field $\mathbb{C}(s_1/s_0, \ldots, s_r/s_0)$ of
$\phi_{L^n}(X)$. Hence the dimension of the image of Y_r under the map ϕ_{τ^*L} is
at least k since the function field $K(\phi_{\tau^*L}(Y_r))$ contains $\mathbb{C}(t_1/t_0, \ldots, t_r/t_0)$.
Furthermore, we have
\[H^i(X, \tau_*\tau^*L^{-1}) = H^i(Y_r, \tau^*L^{-1}), \]
since τ is affine. The trace map gives a splitting of the natural homomorphism
$L^{-1} \to \tau_*\tau^*L^{-1}$, and hence L^{-1} is a direct summand of $\tau_*\tau^*L^{-1}$.
Moreover, Y_r is Cohen-Macaulay since τ is flat. Now by Serre duality,
$H^i(Y_r, \omega_{Y_r} \otimes \tau^*L) = 0$ will imply that $H^i(X, \omega_X \otimes L) = 0$. Hence we may
assume $m = 1$.

Let B be the base locus of the linear system $V = H^0(X, L)$. Let $\pi : \tilde{X} \to X$
be a desingularization of the blow-up of X along B. There is a morphism
\[\psi : \tilde{X} \to \mathbb{P}(V^*) \]
extending the morphism $\phi_L : X - B \to \mathbb{P}(V^*)$. Then we have
\[\psi^*\mathcal{O}(1) = \pi^*L \otimes \mathcal{O}(-E) \]
where E is an effective divisor on \tilde{X} with support in $\pi^{-1}(B)$. Thus there is
an exact sequence
\[0 \to \psi^*\mathcal{O}(1) \otimes \omega_{\tilde{X}} \to \pi^*L \otimes \omega_{\tilde{X}} \to \pi^*L \otimes \omega_{\tilde{X}} \otimes \mathcal{O}_E \to 0. \]
We claim that
\[R^q\pi_*(\psi^*\mathcal{O}(1) \otimes \omega_{\tilde{X}}) = 0 \quad \text{for } q > 0. \]
Let H be a smooth divisor of a section of $\psi^*\mathcal{O}(1)$. Consider the Poincaré
residue sequence
\[0 \to \omega_{\tilde{X}} \to \mathcal{O}(H) \otimes \omega_{\tilde{X}} \to \omega_{H} \to 0. \]
Grauert-Riemenschneider Vanishing Theorem [GR, Satz 2.3] implies that
\[R^q\pi_*\omega_{\tilde{X}} = R^q\pi_*\omega_{H} = 0 \quad \text{for } q > 0. \]
Thus we conclude that
\[R^q\pi_*(\psi^*\mathcal{O}(1) \otimes \omega_{\tilde{X}}) = R^q\pi_*(\mathcal{O}(H) \otimes \omega_{\tilde{X}}) = 0 \quad \text{for } q > 0. \]
Hence we get from (1)
\[0 \to \pi_*(\psi^*\mathcal{O}(1) \otimes \omega_{\tilde{X}}) \to \pi_*(\pi^*L \otimes \omega_{\tilde{X}}) \to \pi_*(\pi^*L \otimes \omega_{\tilde{X}} \otimes \mathcal{O}_E) \to 0. \]
Since $\pi_*(\pi^*L \otimes \omega_{\tilde{X}} \otimes \mathcal{O}_E)$ is supported on B, there is a surjection
\[H^i(X, \pi_*(\psi^*\mathcal{O}(1) \otimes \omega_{\tilde{X}})) \to H^i(X, \pi_*(\pi^*L \otimes \omega_{\tilde{X}})) \quad \text{for } i > \dim B. \]
(In fact, this is an isomorphism for $i > \dim B + 1$.) Via the Leray spectral sequence, this induces a surjection

$$H^i(\widetilde{X}, \psi^*\mathcal{O}(1) \otimes \omega_{\widetilde{X}}) \to H^i(\widetilde{X}, \pi^*L \otimes \omega_{\widetilde{X}}) \quad \text{for} \ i > \dim B,$$

since $R^q\pi_* (\pi^*L \otimes \omega_{\widetilde{X}}) = L \otimes R^q\pi_* \omega_{\widetilde{X}} = 0$, $q > 0$, by the Grauert-Riemenschneider Vanishing Theorem [GR, Satz 2.3].

On the other hand, we have

$$H^i(\widetilde{X}, \psi^*\mathcal{O}(1) \otimes \omega_{\widetilde{X}}) = 0 \quad \text{for} \ i > n - k,$$

by Ramanujam's generalization of the Kodaira Vanishing Theorem [R, Theorem 3]. Therefore, we have

$$H^i(\widetilde{X}, \pi^*L \otimes \omega_{\widetilde{X}}) = 0 \quad \text{for} \ i > \max(n - k, \dim B).$$

Again from the Leray spectral sequence and the Grauert-Riemenschneider Vanishing Theorem [GR, Satz 2.3], it follows that

$$H^i(X, L \otimes \pi_* \omega_{\widetilde{X}}) = 0 \quad \text{for} \ i > \max(n - k, \dim B).$$

Now our proof follows from an exact sequence

$$0 \to \pi_* \omega_{\widetilde{X}} \to \omega_X \to Q \to 0$$

where Q is supported on $\text{Sing}(X)$.

Corollary 2. Let X be an n-dimensional projective variety over \mathbb{C} with only rational singularities outside the base locus B of $H^0(X, L^m)$. Suppose that the dimension of the image of X under the map ϕ_{L^m} is at least k. Then

$$H^i(X, \omega_X \otimes L) = 0 \quad \text{for} \ i > \max(n - k, \dim B).$$

Proof. First, we will show that the reduction step to $m = 1$ works. Let $\pi : \widetilde{X} \to X$ be a desingularization of the blow-up of X along B. By Bertini's Theorem, there is a basis $\{s_0, \ldots, s_r\}$ of $H^0(X, L^m)$ such that the zero schemes of $\pi^*(s_i)$ are of the form $H_i + E$ where H_i are smooth hypersurfaces and E is supported on $\pi^{-1}(B)$. Let $\tau : Y_r \to X$ be a branched covering of X over the union of the divisors D_i constructed as in the proof of the theorem. Consider the fibre product:

$$\begin{array}{ccc}
Y_r & \xrightarrow{\tau} & X \\
\downarrow \rho & & \downarrow \pi \\
Y_r & \xrightarrow{\tau} & X
\end{array}$$

Since cohomology commutes with flat base extension [H, III, 9.3], there are natural isomorphisms

$$R^i\rho_* \mathcal{O}_{\widetilde{Y}_r} \cong \tau^* R^i\pi_* \mathcal{O}_{\widetilde{X}}.$$

Since X has only rational singularities outside B, we have that $R^i\rho_* \mathcal{O}_{\widetilde{Y}_r}$ is supported on $\tau^{-1}(B)$ when $i > 0$ and $\rho_* \mathcal{O}_{\widetilde{Y}_r} = \mathcal{O}_{Y_r}$ on $Y_r - \tau^{-1}(B)$. Moreover, \widetilde{Y}_r is smooth outside $\tau^{-1}(E)$ since the zero schemes of $\pi^*(s_i)$ are smooth on $X - E$. Thus Y_r has only rational singularities outside $\tau^{-1}(B)$. Note that the dimension of B is unchanged under the map τ. Hence we may assume $m = 1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
From [K, Proposition, p. 50], we obtain an exact sequence

(6) \[0 \to \pi_* \omega_X \to \omega_X \to Q \to 0 \]

where \(Q \) is supported on the base locus \(B \). The corollary follows from (4) and this sequence. \(\square \)

ACKNOWLEDGMENT

I am grateful to Professor Donu Arapura for various suggestions and help. This work started during my stay at Purdue University in the summer of 1991. I would like to thank the Department of Mathematics of Purdue University for its hospitality.

REFERENCES

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF MISSOURI-ST. LOUIS, ST. LOUIS, MISSOURI 63121

E-mail address: oh@arch.umsl.edu