Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Special values of the Lerch zeta function and the evaluation of certain integrals

Authors: Kenneth S. Williams and Nan Yue Zhang
Journal: Proc. Amer. Math. Soc. 119 (1993), 35-49
MSC: Primary 11M35; Secondary 11M06
MathSciNet review: 1172963
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Lerch zeta function $ \Phi (x,a,s)$ is defined by the series

$\displaystyle \Phi (x,a,s) = \sum\limits_{n = 0}^\infty {\frac{{{e^{2n\pi ix}}}} {{{{(n + a)}^s}}}} ,$

where $ x$ is real, $ 0 < a \leqslant 1$, and $ \sigma = \operatorname{Re} (s) > 1$ if $ x$ is an integer and $ \sigma > 0$ otherwise. In this paper we study the function $ J\left( {s,a} \right) = \Phi (\tfrac{1} {2},a,s)$. We use its integral representation

$\displaystyle J\left( {s,a} \right) = \frac{{{a^{ - s}}}} {2} + 2\int_0^\infty ... ...tan }^{ - 1}}\frac{y} {a}} \right)} \frac{{{e^{\pi y}}dy}} {{{e^{2\pi y}} - 1}}$

to obtain the values of certain definite integrals; for example, we show that

\begin{displaymath}\begin{gathered}\int_0^\infty {\frac{{\cosh x\log x}} {{\cosh... ...} \right)} \right\},\qquad 0 < a < 1. \hfill \\ \end{gathered} \end{displaymath}

References [Enhancements On Off] (What's this?)

  • [1] W. Gröbner and N. Hofreiter, Integraltafel, zweiter teil, Bestimmte integrale, Springer-Verlag, Berlin, 1966.
  • [2] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469
  • [3] Zhang Nan Yue and Kenneth S. Williams, Application of the Hurwitz zeta function to the evaluation of certain integrals, Canad. Math. Bull. 36 (1993), no. 3, 373–384. MR 1245823,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11M35, 11M06

Retrieve articles in all journals with MSC: 11M35, 11M06

Additional Information

Keywords: Lerch zeta function, Hurwitz zeta function, integral representation, recurrence relations
Article copyright: © Copyright 1993 American Mathematical Society