Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Discreteness of some continuous spectrum eigenfunction expansions


Authors: Don B. Hinton and Robert M. Kauffman
Journal: Proc. Amer. Math. Soc. 119 (1993), 235-243
MSC: Primary 34L10; Secondary 47A70, 47E05
DOI: https://doi.org/10.1090/S0002-9939-1993-1174493-5
MathSciNet review: 1174493
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss replacing the integrals in continuous spectrum expansions by finite sums, in the special case of the Dirichlet problem for second-order ordinary differential operators on a half-line. The error is controlled in the operator norm of $ B(Y,Z)$, where $ Y$ and $ Z$ are natural Hilbert spaces for the problem.


References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson, On the asymptotic behavior of the Titchmarsh-Weyl $ m$-coefficient and the spectral function for scalar second-order differential expressions, Lecture Notes in Math., vol. 964, Springer-Verlag, Berlin, Heidelberg, and New York, 1982, pp. 1-27. MR 693099 (85b:34022)
  • [2] K. Chadan and P. C. Sabatier, Inverse problems in quantum scattering theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1989. MR 985100 (90b:81002)
  • [3] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1965. MR 0069338 (16:1022b)
  • [4] W. N. Everitt, D. B. Hinton, and J. S. W. Wong, On the strong limit-$ n$ classification of linear ordinary differential expressions of order $ 2n$, Proc. London Math. Soc. (3) 29 (1974), 351-357. MR 0409956 (53:13708)
  • [5] D. B. Hinton and J. K. Shaw, Absolutely continuous spectra of second order differential operators with short and long range potentials, SIAM J. Math. Anal. 17 (1986), 182-196. MR 819222 (87c:34038)
  • [6] D. B. Hinton, M. Klaus, and J. K. Shaw, Series representation and asymptotics for Titchmarsh-Weyl $ m$ functions, Differential Integral Equations 2 (1989), 419-429. MR 996750 (90m:34057)
  • [7] R. M. Kauffman, Finite eigenfunction approximation for continuous spectrum operators, Internat. J. Math. Math. Sci. (to appear). MR 1200106 (94e:47030)
  • [8] M. Klaus, On the variation-diminishing property of Schrödinger operators, Oscillation, Bifurcation, and Chaos, CMS Conference Proceedings, vol. 8, Amer. Math. Soc., Providence, RI, 1986, pp. 199-212. MR 909910 (88m:34026)
  • [9] V. A. Marchenko, Sturm-Liouville operators and applications, Birkhäuser Verlag, Boston, MA, 1986. MR 897106 (88f:34034)
  • [10] E. C. Titchmarsh, Eigenfunction expansions, Part 1, Oxford Univ. Press, Oxford, 1962. MR 0176151 (31:426)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34L10, 47A70, 47E05

Retrieve articles in all journals with MSC: 34L10, 47A70, 47E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1174493-5
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society