Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Discreteness of some continuous spectrum eigenfunction expansions


Authors: Don B. Hinton and Robert M. Kauffman
Journal: Proc. Amer. Math. Soc. 119 (1993), 235-243
MSC: Primary 34L10; Secondary 47A70, 47E05
MathSciNet review: 1174493
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss replacing the integrals in continuous spectrum expansions by finite sums, in the special case of the Dirichlet problem for second-order ordinary differential operators on a half-line. The error is controlled in the operator norm of $ B(Y,Z)$, where $ Y$ and $ Z$ are natural Hilbert spaces for the problem.


References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson, On the asymptotic behaviour of the Titchmarsh-Weyl 𝑚-coefficient and the spectral function for scalar second-order differential expressions, Ordinary and partial differential equations (Dundee, 1982) Lecture Notes in Math., vol. 964, Springer, Berlin, 1982, pp. 1–27. MR 693099, 10.1007/BFb0064985
  • [2] K. Chadan and P. C. Sabatier, Inverse problems in quantum scattering theory, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, New York, 1989. With a foreword by R. G. Newton. MR 985100
  • [3] Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338
  • [4] W. N. Everitt, D. B. Hinton, and J. S. W. Wong, On the strong limit-𝑛 classification of linear ordinary differential expressions of order 2𝑛, Proc. London Math. Soc. (3) 29 (1974), 351–367. MR 0409956
  • [5] D. B. Hinton and J. K. Shaw, Absolutely continuous spectra of second order differential operators with short and long range potentials, SIAM J. Math. Anal. 17 (1986), no. 1, 182–196. MR 819222, 10.1137/0517017
  • [6] D. B. Hinton, M. Klaus, and J. K. Shaw, Series representation and asymptotics for Titchmarsh-Weyl 𝑚-functions, Differential Integral Equations 2 (1989), no. 4, 419–429. MR 996750
  • [7] Robert M. Kauffman, Finite eigenfunction approximations for continuous spectrum operators, Internat. J. Math. Math. Sci. 16 (1993), no. 1, 1–22. MR 1200106, 10.1155/S0161171293000018
  • [8] Martin Klaus, On the variation-diminishing property of Schrödinger operators, Oscillations, bifurcation and chaos (Toronto, Ont., 1986) CMS Conf. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 1987, pp. 199–211. MR 909910
  • [9] Vladimir A. Marchenko, Sturm-Liouville operators and applications, Operator Theory: Advances and Applications, vol. 22, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR 897106
  • [10] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, Second Edition, Clarendon Press, Oxford, 1962. MR 0176151

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34L10, 47A70, 47E05

Retrieve articles in all journals with MSC: 34L10, 47A70, 47E05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1174493-5
Article copyright: © Copyright 1993 American Mathematical Society