Discreteness of some continuous spectrum eigenfunction expansions

Authors:
Don B. Hinton and Robert M. Kauffman

Journal:
Proc. Amer. Math. Soc. **119** (1993), 235-243

MSC:
Primary 34L10; Secondary 47A70, 47E05

MathSciNet review:
1174493

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss replacing the integrals in continuous spectrum expansions by finite sums, in the special case of the Dirichlet problem for second-order ordinary differential operators on a half-line. The error is controlled in the operator norm of , where and are natural Hilbert spaces for the problem.

**[1]**F. V. Atkinson,*On the asymptotic behaviour of the Titchmarsh-Weyl 𝑚-coefficient and the spectral function for scalar second-order differential expressions*, Ordinary and partial differential equations (Dundee, 1982) Lecture Notes in Math., vol. 964, Springer, Berlin, 1982, pp. 1–27. MR**693099**, 10.1007/BFb0064985**[2]**K. Chadan and P. C. Sabatier,*Inverse problems in quantum scattering theory*, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, New York, 1989. With a foreword by R. G. Newton. MR**985100****[3]**Earl A. Coddington and Norman Levinson,*Theory of ordinary differential equations*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR**0069338****[4]**W. N. Everitt, D. B. Hinton, and J. S. W. Wong,*On the strong limit-𝑛 classification of linear ordinary differential expressions of order 2𝑛*, Proc. London Math. Soc. (3)**29**(1974), 351–367. MR**0409956****[5]**D. B. Hinton and J. K. Shaw,*Absolutely continuous spectra of second order differential operators with short and long range potentials*, SIAM J. Math. Anal.**17**(1986), no. 1, 182–196. MR**819222**, 10.1137/0517017**[6]**D. B. Hinton, M. Klaus, and J. K. Shaw,*Series representation and asymptotics for Titchmarsh-Weyl 𝑚-functions*, Differential Integral Equations**2**(1989), no. 4, 419–429. MR**996750****[7]**Robert M. Kauffman,*Finite eigenfunction approximations for continuous spectrum operators*, Internat. J. Math. Math. Sci.**16**(1993), no. 1, 1–22. MR**1200106**, 10.1155/S0161171293000018**[8]**Martin Klaus,*On the variation-diminishing property of Schrödinger operators*, Oscillations, bifurcation and chaos (Toronto, Ont., 1986) CMS Conf. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 1987, pp. 199–211. MR**909910****[9]**Vladimir A. Marchenko,*Sturm-Liouville operators and applications*, Operator Theory: Advances and Applications, vol. 22, Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR**897106****[10]**E. C. Titchmarsh,*Eigenfunction expansions associated with second-order differential equations. Part I*, Second Edition, Clarendon Press, Oxford, 1962. MR**0176151**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34L10,
47A70,
47E05

Retrieve articles in all journals with MSC: 34L10, 47A70, 47E05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1993-1174493-5

Article copyright:
© Copyright 1993
American Mathematical Society