Finite loop space with maximal tori have finite Weyl groups

Author:
Larry Smith

Journal:
Proc. Amer. Math. Soc. **119** (1993), 299-302

MSC:
Primary 55P35

DOI:
https://doi.org/10.1090/S0002-9939-1993-1181174-0

MathSciNet review:
1181174

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A finite loop space is said to have a *maximal torus* if there is a map where is a torus such that and the homotopy fibre of has the homotopy type of a finite complex.

The *Weyl group* of is the set of homotopy classes such that

**[1]**J. F. Adams and C. W. Wilkerson,*Polynomial algebras over the Steenrod algebra*, Ann. of Math. (2)**110**(1980), 96-143. MR**558398 (81h:55006)****[2]**R. M. Kane,*Homology of Hopf spaces*, North-Holland, Amsterdam, 1988. MR**961257 (90f:55018)****[3]**J. Milnor and J. C. Moore,*On the structure of Hopf Algebras*, Ann. of Math. (2)**81**(1965), 211-264. MR**0174052 (30:4259)****[4]**J. C. Moore,*Algèbre homologique et homologie des éspaces classifiant*, Seminar Cartan 1959/60 Expose 7.**[5]**D. Notbohm,*Maps between classifying spaces and applications*, Math. Göttingensis, vol. 20, Springer, Berlin and New York, 1991. MR**1106820 (92b:55017)****[6]**D. Notbohm and L. Smith,*Fake Lie groups and maximal tori*. I, II, III, Math. Ann.**288**(1990), 637-661; Math. Ann.**288**(1990), 663-673; Math. Ann.**290**(1991), 629-642. MR**1081269 (92k:55012a)****[7]**D. Rector,*Subgroups of finite dimensional topological groups*, J. Pure Appl. Algebra**1**(1971), 253-273. MR**0301734 (46:889)****[8]**D. Rector and J. D. Stasheff,*Lie groups from a homotopy point of view*, Symposium on Algebraic Topology (Seattle), Lecture Notes in Math., vol. 249, Springer, Berlin, Heidelberg, and New York, 1971, pp. 99-105.**[9]**O. Zariski and P. Samuel,*Commutative algebra*, Vol. II (Appendix 7), van Nostrand, Princeton, NJ, 1958. MR**0120249 (22:11006)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55P35

Retrieve articles in all journals with MSC: 55P35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1181174-0

Article copyright:
© Copyright 1993
American Mathematical Society