Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Moment conditions for almost sure convergence of weakly correlated random variables


Authors: W. Bryc and W. Smoleński
Journal: Proc. Amer. Math. Soc. 119 (1993), 629-635
MSC: Primary 60F15; Secondary 60E15
DOI: https://doi.org/10.1090/S0002-9939-1993-1149969-7
MathSciNet review: 1149969
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For random sequences with unrestricted maximal correlation coefficient strictly less than $ 1$, sufficient moment conditions for almost sure convergence of a series and for the strong law of large numbers are given.


References [Enhancements On Off] (What's this?)

  • [1] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968. MR 0233396 (38:1718)
  • [2] R. C. Bradley, On the spectral density and asymptotic normality of weakly dependent random fields, J. Theoret. Probab. 5 (1992), 355-374. MR 1157990 (93e:60094)
  • [3] -, Equivalent mixing conditions for random fields, Technical Report No. 336, Center for Stochastic Processes, Univ. of North Carolina, Chapel Hill, 1990.
  • [4] W. Bryc, Conditional expectation with respect to dependent $ \sigma $-fields, Proc. Seventh Conf. on Probability Theory; Brasov (M. Iosifescu, ed.), Editura Acad. Rep. Soc. Romania, Bucurestic, 1984, pp. 409-411. MR 867452 (88e:60006)
  • [5] R. Cheng, On the rate of strong mixing in stationary Gaussian fields, Studia Math. 101 (1992), 183-192. MR 1149571 (93e:60069)
  • [6] J. D. Deuschel and D. W. Stroock, Large deviations, Pure Appl. Math., vol. 137, Academic Press, Boston, MA, 1989. MR 997938 (90h:60026)
  • [7] W. Feller, An introduction to probability theory and its applications, Wiley, New York, 1966. MR 0210154 (35:1048)
  • [8] F. Moricz, Moment inequalities for the maximum of partial sums of random fields, Acta Sci. Math. 39 (1977), 353-366. MR 0458535 (56:16735)
  • [9] M. Peligrad, The $ r$-quick version of the strong law for stationary $ \phi $-mixing sequences, Proc. Internat. Conf. on Almost Everywhere Convergence in Probab. and Statist., Academic Press, New York, 1989, pp. 335-348. MR 1035254 (91k:60042)
  • [10] M. Riesz, sur les maxima des formes bilinéaires et sur les fonctionelles linéaires, Acta Math. 49 (1926), 465-497. MR 1555250
  • [11] W. F. Stout, On convergence of $ \phi $-mixing sequences of random variables, Z. Wahrsch. Verw. Gebiete 31 (1974), 69-70. MR 0358941 (50:11398)
  • [12] P.J. Szablowski, Generalized laws of large numbers and auxiliary results concerning stochastic approximation with dependent disturbances. II, Comm. Math. Appl. 13 (1987), 973-987. MR 898944 (88k:62160b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60F15, 60E15

Retrieve articles in all journals with MSC: 60F15, 60E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1149969-7
Keywords: Maximal correlation, almost surely convergent series, strong law of large numbers
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society