Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On quantum spaces of Lie algebras

Authors: Lieven Le Bruyn and Michel Van den Bergh
Journal: Proc. Amer. Math. Soc. 119 (1993), 407-414
MSC: Primary 17B35; Secondary 16W30, 17B37
MathSciNet review: 1149975
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The homogenization $ H(\mathfrak{g})$ of the enveloping algebra of a finite dimensional Lie algebra $ \mathfrak{g}$ is an Artin-Schelter regular algebra. We characterize $ d$-dimensional linear subspaces in the corresponding quantum space $ {\mathbb{P}_q}(\mathfrak{g})$ as homogenizations of induced representations from codimension $ d$ Lie subalgebras. Furthermore we prove that the point variety has an embedded component iff there is a line, not contained in this point variety.

References [Enhancements On Off] (What's this?)

  • [1] M. Artin and W. Schelter, Graded algebras of global dimension $ 3$, Adv. Math. 66 (1987), 171-216. MR 917738 (88k:16003)
  • [2] M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, Grothendieck Festschrift, vol. 1, Birkhäuser, Basel, 1990, pp. 33-85. MR 1086882 (92e:14002)
  • [3] M. Artin, Geometry of quantum planes, preprint, MIT, 1990. MR 1144023 (93b:14004)
  • [4] M. Ascensio, M. Van den Bergh, and F. Van Oystaeyen, A new algebraic approach to microlocalization, Trans. Amer. Math. Soc. 316 (1989), 537-553. MR 958890 (90c:16001)
  • [5] J. Dixmier, Enveloping algebras, North-Holland, Amsterdam, 1977. MR 0498740 (58:16803b)
  • [6] V. Ginsburg, Characteristic varieties and vanishing cycles, Invent. Math. 84 (1986), 327-402. MR 833194 (87j:32030)
  • [7] L. Le Bruyn and S. P. Smith, Homogenized $ \mathfrak{s}\mathfrak{l}(2)$, Proc. Amer. Math. Soc. (to appear). MR 1136235 (93i:16056)
  • [8] Li Huishi and F. Van Oystaeyen, Zariskian filtrations, monograph (to appear). MR 1030604 (90m:16004)
  • [9] Th. Levasseur, Some properties of non-commutative regular graded rings, Proc. Edinburgh Math. Soc. (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B35, 16W30, 17B37

Retrieve articles in all journals with MSC: 17B35, 16W30, 17B37

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society