Differentiability of the norm in von Neumann algebras

Authors:
Keith F. Taylor and Wend Werner

Journal:
Proc. Amer. Math. Soc. **119** (1993), 475-480

MSC:
Primary 46L10; Secondary 46B07

DOI:
https://doi.org/10.1090/S0002-9939-1993-1149980-6

MathSciNet review:
1149980

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Smooth points in von Neumann algebras are characterized in terms of minimal projections. The theorem generalizes known results for the algebra and the space of bounded linear operators on a Hilbert space.

**[1]**C. A. Akemann and G. K. Pedersen,*Facial structure in operator algebra theory*, Proc. London Math. Soc.**64**(1992), 418-448. MR**1143231 (93c:46106)****[2]**C. M. Edwards and G. T. Rüttimann,*On the facial structure of the unit balls in a*-*triple and its dual*, J. London Math. Soc. (2)**38**(1988), 317-332. MR**966303 (90b:46129)****[3]**S. Heinrich,*The differentiability of the norm in spaces of operators*, Funct. Anal. Appl.**9**(1975), 360-362. MR**0390834 (52:11657)****[4]**R. V. Kadison and J. R. Ringrose,*Fundamentals of the theory of operator algebras*. I, II, Academic Press, New York and London, 1983, 1986.**[5]**F. Kittaneh and R. Younis,*Smooth points of certain operator spaces*, Integral Equations Operator Theory**13**(1990), 849-855. MR**1073855 (91h:47041)****[6]**R. R. Phelps,*Convex functions, monotone operators and differentiability*, Lecture Notes in Math., vol. 1364, Springer, Berlin, Heidelberg, and New York, 1989. MR**984602 (90g:46063)****[7]**M. Takesaki,*Theory of operator algebras*. I, Springer, Berlin, Heidelberg, and New York, 1979. MR**548728 (81e:46038)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L10,
46B07

Retrieve articles in all journals with MSC: 46L10, 46B07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1149980-6

Article copyright:
© Copyright 1993
American Mathematical Society