Differentiability of the norm in von Neumann algebras

Authors:
Keith F. Taylor and Wend Werner

Journal:
Proc. Amer. Math. Soc. **119** (1993), 475-480

MSC:
Primary 46L10; Secondary 46B07

MathSciNet review:
1149980

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Smooth points in von Neumann algebras are characterized in terms of minimal projections. The theorem generalizes known results for the algebra and the space of bounded linear operators on a Hilbert space.

**[1]**Charles A. Akemann and Gert K. Pedersen,*Facial structure in operator algebra theory*, Proc. London Math. Soc. (3)**64**(1992), no. 2, 418–448. MR**1143231**, 10.1112/plms/s3-64.2.418**[2]**C. M. Edwards and G. T. Rüttimann,*On the facial structure of the unit balls in a 𝐽𝐵𝑊*-triple and its predual*, J. London Math. Soc. (2)**38**(1988), no. 2, 317–332. MR**966303**, 10.1112/jlms/s2-38.2.317**[3]**S. Heĭnrih,*The differentiability of the norm in spaces of operators*, Funkcional. Anal. i Priložen.**9**(1975), no. 4, 93–94 (Russian). MR**0390834****[4]**R. V. Kadison and J. R. Ringrose,*Fundamentals of the theory of operator algebras*. I, II, Academic Press, New York and London, 1983, 1986.**[5]**Fuad Kittaneh and Rahman Younis,*Smooth points of certain operator spaces*, Integral Equations Operator Theory**13**(1990), no. 6, 849–855. MR**1073855**, 10.1007/BF01198920**[6]**Robert R. Phelps,*Convex functions, monotone operators and differentiability*, Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1989. MR**984602****[7]**Masamichi Takesaki,*Theory of operator algebras. I*, Springer-Verlag, New York-Heidelberg, 1979. MR**548728**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L10,
46B07

Retrieve articles in all journals with MSC: 46L10, 46B07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1149980-6

Article copyright:
© Copyright 1993
American Mathematical Society