Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A bridge between complex geometry and Riemannian geometry

Author: Antonio Cassa
Journal: Proc. Amer. Math. Soc. 119 (1993), 621-628
MSC: Primary 53C56; Secondary 32C10
MathSciNet review: 1152272
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Every complex manifold $ {M^n}$ with holomorphic metric can be obtained (at least locally) from a complex manifold $ {E^{2 \bullet n - 2}}$ and one of its $ \mathbb{C}$principal bundles $ L$. The manifold $ E$ is made of all (signed) complex geodesies of $ M$ and $ L$ is the bundle on $ E$ of all choices of "times" evolving along the geodesies.

References [Enhancements On Off] (What's this?)

  • [BM] R. Baston and L. Mason, Conformal gravity, the Einstein equation and spaces of complex null geodesies, Classical Quantum Gravity 4 (1987), 815-826. MR 895903 (88h:83010)
  • [EL1] M. Eastwood and C. LeBrun, Thickenings and supersymmetric extensions of complex manifolds, Amer. J. Math. 108 (1986), 1177-1192. MR 859775 (87j:32041)
  • [EL2] -, Fattenings complex manifolds, J. Geom. Phys. 8 (1992), 123-147. MR 1165875 (93d:32048)
  • [IYG] J. Isenberg, P. Yassin, and P. S. Green, Non-self-dual gauge fields, Phys. Lett. B 78 (1978), 462-464.
  • [L1] C. LeBrun, Spaces of complex null geodesies in complex Riemannian geometry, Trans. Amer. Math. Soc. 278 (1983), 209-231. MR 697071 (84e:32023)
  • [L2] -, The first formal neighborhood of ambitwistor space for curved spaces, Lett. Math. Phys. 6 (1982), 345-354. MR 677436 (84d:32044)
  • [L3] -, Ambitwistors and Einstein equations, Classical Quantum Gravity 2 (1985), 555-563.
  • [L4] -, Thickenings and gauge fields, Classical Quantum Gravity 3 (1986), 1039-1059. MR 868717 (88e:32045)
  • [L5] -, Thickenings and conformal gravity, Comm. Math. Phys. 139 (1991), 1-43. MR 1116408 (92h:83052)
  • [M] Yu. Manin, Gauge field theory and complex geometry, Springer-Verlag, Berlin, 1988. MR 954833 (89d:32001)
  • [P] R. Penrose, Non linear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), 31-52. MR 0439004 (55:11905)
  • [PW] R. Penrose and R. S. Ward, Twistors for flat and curved space-time, Gen. Relativity Gravitation, One hundred years (A. Held, ed.), Plenum, New York, 1980. MR 617923 (82j:83001)
  • [W] E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. B 77 (1978), 394-397.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C56, 32C10

Retrieve articles in all journals with MSC: 53C56, 32C10

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society