Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the existence of periodic solutions for scalar second order differential equations when only the asymptotic behaviour of the potential is known


Author: Alessandro Fonda
Journal: Proc. Amer. Math. Soc. 119 (1993), 439-445
MSC: Primary 34C25; Secondary 34B15
DOI: https://doi.org/10.1090/S0002-9939-1993-1154246-4
MathSciNet review: 1154246
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Assuming only asymptotic conditions on the potential function, we prove the existence of periodic solutions for equations whose nonlinearity stays below the first curve of Fučik's spectrum.


References [Enhancements On Off] (What's this?)

  • [1] A. Adje, Sur et sous solutions dans les équations différentielles discontinues avec conditions aux limites non linéaires, Ph.D. Thesis, Louvain-la-Neuve, 1987.
  • [2] D. de Figueiredo and B. Ruf, On a superlinear Sturm-Liouville equation and a related bouncing problem, J. Reine Angew. Math. 421 (1991), 1-22. MR 1129572 (92j:34037)
  • [3] T. Ding, R. Iannacci, and F. Zanolin, Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations (to appear). MR 1240400 (94g:34060)
  • [4] T. Ding and F. Zanolin, Time-maps for the solvability of periodically perturbed nonlinear Duffing equations, Nonlinear Anal. TMA 17 (1991), 635-653. MR 1128965 (93j:34053)
  • [5] M. L. C. Fernandes and F. Zanolin, Periodic solutions of a second order differential equation with one-sided growth restrictions or the restoring term, Arch. Math. 51 (1988), 151-163. MR 959391 (89i:34053)
  • [6] A. Fonda and F. Zanolin, On the use of time-maps for the solvability of nonlinear boundary value problems, Arch. Math. 59 (1992), 245-259. MR 1174402 (93i:34035)
  • [7] S. Fučik, Solvability of nonlinear equations and boundary value problems, Reidel, Dortrecht, 1980.
  • [8] J.-P. Gossez and P. Omari, Periodic solutions of a second order ordinary differential equation: a necessary and sufficient condition for nonresonance, J. Differential Equations 94 (1991), 67-82. MR 1133541 (92m:34090)
  • [9] -, A note on periodic solutions for a second order ordinary differential equation, Boll. Un. Mat. Ital. A 5 (1991), 223-231. MR 1120383 (93d:34075)
  • [10] J. Mawhin, Points fixes, point critiques et problèmes aux limites, Sem. Math. Sup., vol. 92, Presses Univ. Montreal, Montreal, 1985. MR 789982 (86h:47083)
  • [11] Z. Opial, Sur les périodes des solutions de l' équation differentielle $ {x^{''}} + g(x) = 0$, Ann. Polon. Math. 10 (1961), 49-72. MR 0121544 (22:12281)
  • [12] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. MR 845785 (87j:58024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C25, 34B15

Retrieve articles in all journals with MSC: 34C25, 34B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1154246-4
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society