Shadowing property of continuous maps with zero topological entropy

Author:
Milan Kuchta

Journal:
Proc. Amer. Math. Soc. **119** (1993), 641-648

MSC:
Primary 58F08; Secondary 54H20

MathSciNet review:
1165058

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The study of the shadowing property has a long history but for interval maps it is rather new. Recent research in this direction is mainly focused on the positive entropy maps and work for zero entropy is still seldom to be found in the literature. In this paper we give a characterization of zero topological entropy maps which have the shadowing property. Moreover, our condition is necessary for any continuous function to have the shadowing property.

**[1]**D. V. Anosov,*On a class of invariant sets for smooth dynamical systems*, Proc. 5th International Conf. on Nonlinear Oscillations 2, Math. Inst. Ukrainian Acad. Sci., Kiev, 1970, pp. 39-45. (Russian)**[2]**Louis Block,*Simple periodic orbits of mappings of the interval*, Trans. Amer. Math. Soc.**254**(1979), 391–398. MR**539925**, 10.1090/S0002-9947-1979-0539925-9**[3]**Rufus Bowen,*On Axiom A diffeomorphisms*, American Mathematical Society, Providence, R.I., 1978. Regional Conference Series in Mathematics, No. 35. MR**0482842****[4]**A. Boyarsky and P. Góra,*The pseudo-orbit shadowing property for Markov operators in the space of probability density functions*, preprint, 1989.**[5]**Liang Chen,*Linking and the shadowing property for piecewise monotone maps*, Proc. Amer. Math. Soc.**113**(1991), no. 1, 251–263. MR**1079695**, 10.1090/S0002-9939-1991-1079695-2**[6]**-,*Shadowing property for nondegenerate zero entropy piecewise monotone maps*, preprint, SUNY, Stony Brook, 1990.**[7]**Ethan M. Coven, Ittai Kan, and James A. Yorke,*Pseudo-orbit shadowing in the family of tent maps*, Trans. Amer. Math. Soc.**308**(1988), no. 1, 227–241. MR**946440**, 10.1090/S0002-9947-1988-0946440-2**[8]**Tomáš Gedeon and Milan Kuchta,*Shadowing property of continuous maps*, Proc. Amer. Math. Soc.**115**(1992), no. 1, 271–281. MR**1086325**, 10.1090/S0002-9939-1992-1086325-3**[9]**Stephen M. Hammel, James A. Yorke, and Celso Grebogi,*Do numerical orbits of chaotic dynamical processes represent true orbits?*, J. Complexity**3**(1987), no. 2, 136–145. MR**907194**, 10.1016/0885-064X(87)90024-0**[10]**I. Kan,*Shadowing property of quadratic maps*, preprint, 1989.**[11]**Milan Kuchta,*Characterization of chaos for continuous maps of the circle*, Comment. Math. Univ. Carolin.**31**(1990), no. 2, 383–390. MR**1077909****[12]**Timothy Pennings and Jeffrey Van Eeuwen,*Pseudo-orbit shadowing on the unit interval*, Real Anal. Exchange**16**(1990/91), no. 1, 238–244. MR**1087487****[13]**D. Preiss and J. Smítal,*A characterization of nonchaotic continuous maps of the interval stable under small perturbations*, Trans. Amer. Math. Soc.**313**(1989), no. 2, 687–696. MR**997677**, 10.1090/S0002-9947-1989-0997677-9**[14]**O. M. Šarkovs′kiĭ,*On cycles and the structure of a continuous mapping*, Ukrain. Mat. Ž.**17**(1965), no. 3, 104–111 (Russian). MR**0186757**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F08,
54H20

Retrieve articles in all journals with MSC: 58F08, 54H20

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1993-1165058-X

Keywords:
Shadowing property,
iteration,
zero topological entropy

Article copyright:
© Copyright 1993
American Mathematical Society