Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalization of the Aramata-Brauer theorem


Author: Sandra L. Rhoades
Journal: Proc. Amer. Math. Soc. 119 (1993), 357-364
MSC: Primary 20C15; Secondary 11M41, 11R42
DOI: https://doi.org/10.1090/S0002-9939-1993-1166360-8
MathSciNet review: 1166360
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Aramata-Brauer Theorem says that the regular character minus the principal character of a finite group can be written as a positive rational linear combination of induced linear characters. In the language of Artin $ L$-series this says that $ {\zeta _E}(s)/{\zeta _F}(s)$ is entire, where this is the quotient of the Dedekind $ \zeta $-functions of a Galois extension $ E/F$ of number fields. Given any subset of characters of a finite group, we will give a necessary and sufficient condition for when a character is a positive rational linear combination of characters from this specified subset. This result implies that the regular character plus or minus any irreducible character can be written as a positive rational linear combination of induced linear characters. This both generalizes and gives a new proof of the Aramata-Brauer Theorem.


References [Enhancements On Off] (What's this?)

  • [1] H. Aramata, Über die Teilbarkeit der Dedekindschen Zetafunktionen, Proc. Imp. Acad. Tokyo 7 (1931), 334-336. MR 1568322
  • [2] -, Über die Teilbarkeit der Dedekindschen Zetafunktionen, Proc. Imp. Acad. Tokyo 9 (1933), 31-34. MR 1568340
  • [3] R. Brauer, On the zeta-functions of algebraic number fields, Amer. J. Math. 69 (1947), 243-250. MR 0020597 (8:567h)
  • [4] R. Foote, Nonmonomial characters and Artin's conjecture, Trans. Amer. Math. Soc. 321 (1990), 261-272. MR 987161 (90m:11177)
  • [5] R. Foote and V. K. Murty, Zeros and poles of Artin $ L$-series, Math. Proc. Cambridge Philos. Soc. 105 (1989), 5-11. MR 966135 (89k:11109)
  • [6] R. Foote and D. Wales, Zeros of order $ 2$ of Dedekind zeta-functions and Artin's conjecture, J. Algebra 131 (1990), 226-257. MR 1055006 (91b:11132)
  • [7] H. Heilbronn, On the real zeros of Dedekind $ \zeta $-functions, Canad. J. Math. 25 (1973), 870-873. MR 0327719 (48:6061)
  • [8] H. Stark, Some effective cases of the Brauer-Siegel Theorem, Invent. Math. 23 (1974), 135-152. MR 0342472 (49:7218)
  • [9] J. Stoer and C. Witzgall, Convexity and optimization in finite dimensions. I, Springer-Verlag, Berlin, 1970. MR 0286498 (44:3707)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C15, 11M41, 11R42

Retrieve articles in all journals with MSC: 20C15, 11M41, 11R42


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1166360-8
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society