Universal filtration of Schur complexes

Author:
Giandomenico Boffi

Journal:
Proc. Amer. Math. Soc. **119** (1993), 351-355

MSC:
Primary 13D25; Secondary 20G05

MathSciNet review:
1169021

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Schur complex has proved useful in studying resolutions of determinantal ideals, both in characteristic zero and in a characteristic-free setting. We show here that in every characteristic, is isomorphic, up to a filtration, to a sum of Schur complexes , where is the usual Littlewood-Richardson coefficient. This generalizes a well-known direct sum decomposition of in characteristic zero.

**[1]**Kaan Akin, David A. Buchsbaum, and Jerzy Weyman,*Resolutions of determinantal ideals: the submaximal minors*, Adv. in Math.**39**(1981), no. 1, 1–30. MR**605350**, 10.1016/0001-8708(81)90055-4**[2]**Kaan Akin, David A. Buchsbaum, and Jerzy Weyman,*Schur functors and Schur complexes*, Adv. in Math.**44**(1982), no. 3, 207–278. MR**658729**, 10.1016/0001-8708(82)90039-1**[3]**Marilena Barnabei and Andrea Brini,*The Littlewood-Richardson rule for co-Schur modules*, Adv. in Math.**67**(1988), no. 2, 143–173. MR**925265**, 10.1016/0001-8708(88)90039-4**[4]**Giandomenico Boffi,*The universal form of the Littlewood-Richardson rule*, Adv. in Math.**68**(1988), no. 1, 40–63. MR**931171**, 10.1016/0001-8708(88)90007-2**[5]**Giandomenico Boffi,*Characteristic-free decomposition of skew Schur functors*, J. Algebra**125**(1989), no. 2, 288–297. MR**1018946**, 10.1016/0021-8693(89)90165-8**[6]**Giandomenico Boffi,*A remark on a paper by M. Barnabei and A. Brini: “The Littlewood-Richardson rule for co-Schur modules” [Adv. Math. 67 (1988), no. 2, 143–173; MR0925265 (89h:20022)]*, J. Algebra**139**(1991), no. 2, 458–467. MR**1113785**, 10.1016/0021-8693(91)90303-P**[7]**T. Józefiak, P. Pragacz, and J. Weyman,*Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices*, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 109–189. MR**646819****[8]**Hyoung J. Ko,*The decompositions of Schur complexes*, Trans. Amer. Math. Soc.**324**(1991), no. 1, 255–270. MR**986029**, 10.1090/S0002-9947-1991-0986029-2**[9]**H. A. Nielsen,*Tensor functors of complexes*, Aarhus Univ. Preprint Series, no. 15, 1978.**[10]**Piotr Pragacz and Jerzy Weyman,*Complexes associated with trace and evaluation. Another approach to Lascoux’s resolution*, Adv. in Math.**57**(1985), no. 2, 163–207. MR**803010**, 10.1016/0001-8708(85)90052-0**[11]**M. Artale and G. Boffi,*On a subcomplex of the Schur complex*, J. Algebra**176**(1995), no. 3, 762–785. MR**1351363**, 10.1006/jabr.1995.1272

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
13D25,
20G05

Retrieve articles in all journals with MSC: 13D25, 20G05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1993-1169021-4

Article copyright:
© Copyright 1993
American Mathematical Society