Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Asymptotic behavior of solutions of Poincaré difference equations


Author: William F. Trench
Journal: Proc. Amer. Math. Soc. 119 (1993), 431-438
MSC: Primary 39A10
MathSciNet review: 1184088
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if the zeros $ {\lambda _1},{\lambda _2}, \ldots ,{\lambda _n}$ of the polynomial

$\displaystyle q(\lambda ) = {\lambda ^n} + {a_1}{\lambda ^{n - 1}} + \cdots + {a_n}$

are distinct and $ r$ is an integer in $ \{ 1,2, \ldots ,n\} $ such that $ \vert{\lambda _s}\vert \ne \vert{\lambda _r}\vert$ if $ s \ne r$, then the Poincaré difference equation

$\displaystyle y(n + m) + ({a_1} + {p_1}(m))y(n + m - 1) + \cdots + ({a_n} + {p_n}(m))y(m) = 0$

has a solution $ {y_r}$ such that (A) $ {y_r}(m) = \lambda _r^m(1 + o(1))$ as $ m \to \infty $, provided that the sums $ \sum\nolimits_{j = m}^\infty {{p_i}(j)\;(1 \leqslant i \leqslant n)} $ converge sufficiently rapidly. Our results improve over previous results in that these series may converge conditionally, and we give sharper estimates of the $ o(1)$ terms in (A).

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 39A10

Retrieve articles in all journals with MSC: 39A10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1184088-5
PII: S 0002-9939(1993)1184088-5
Keywords: Poincaré difference equation, asymptotic behavior, Perron's theorem, conditional convergence
Article copyright: © Copyright 1993 American Mathematical Society