Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Boundary behavior of holomorphic functions of $ A\sp p\sb {q,s}$

Author: Zhang Jian Hu
Journal: Proc. Amer. Math. Soc. 119 (1993), 447-451
MSC: Primary 32A40; Secondary 32A37, 32F15
MathSciNet review: 1195733
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that the Sobolov spaces $ A_{q,s}^p(D)$ on bounded strongly pseudoconvex domains $ D$ are continuously contained in $ \operatorname{BMOA} (\partial D)$ for $ 0 < p < \infty ,q \geqslant 0$, and $ s = (n + q)/p$.

References [Enhancements On Off] (What's this?)

  • [1] Frank Beatrous Jr., Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), no. 1, 91–116. MR 812605, 10.1007/BF01163612
  • [2] Jacob Burbea, Boundary behavior of holomorphic functions in the ball, Pacific J. Math. 127 (1987), no. 1, 1–17. MR 876015
  • [3] Ian Graham, The radial derivative, fractional integrals, and comparative growth of means of holomorphic functions on the unit ball in 𝐶ⁿ, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 171–178. MR 627757
  • [4] Steven G. Krantz, Function theory of several complex variables, John Wiley & Sons, Inc., New York, 1982. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 635928
  • [5] Steven G. Krantz, Analysis on the Heisenberg group and estimates for functions in Hardy classes of several complex variables, Math. Ann. 244 (1979), no. 3, 243–262. MR 553255, 10.1007/BF01420346
  • [6] Steven G. Krantz and Daowei Ma, Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), no. 1, 145–163. MR 942099, 10.1512/iumj.1988.37.37007
  • [7] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Mathematical Notes, No. 11. MR 0473215
  • [8] Richard M. Timoney, Bloch functions in several complex variables. I, Bull. London Math. Soc. 12 (1980), no. 4, 241–267. MR 576974, 10.1112/blms/12.4.241
  • [9] N. Th. Varopoulos, BMO functions and the \overline∂-equation, Pacific J. Math. 71 (1977), no. 1, 221–273. MR 0508035

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A40, 32A37, 32F15

Retrieve articles in all journals with MSC: 32A40, 32A37, 32F15

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society