A characterization of harmonic Arakelyan sets

Authors:
M. Goldstein and W. H. Ow

Journal:
Proc. Amer. Math. Soc. **119** (1993), 811-816

MSC:
Primary 31B05; Secondary 30E10, 30F15

DOI:
https://doi.org/10.1090/S0002-9939-1993-1149971-5

MathSciNet review:
1149971

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a closed subset of either , or a Riemann surface, necessary and sufficient conditions are given so that every function continuous on and harmonic in the interior can be uniformly approximated on by globally defined harmonic functions.

**[1]**N. U. Arakeljan,*Uniform approximation on closed sets by entire functions*, Izv. Akad. Nauk SSSR Ser. Mat.**28**(1964), 1187–1206 (Russian). MR**0170017****[2]**D. H. Armitage and M. Goldstein,*Better than uniform approximation on closed sets by harmonic functions with singularities*, Proc. London Math. Soc. (3)**60**(1990), no. 2, 319–343. MR**1031456**, https://doi.org/10.1112/plms/s3-60.2.319**[3]**Thomas Bagby and P. M. Gauthier,*Approximation by harmonic functions on closed subsets of Riemann surfaces*, J. Analyse Math.**51**(1988), 259–284. MR**963157**, https://doi.org/10.1007/BF02791126**[4]**-,*Uniform approximation by global harmonic functions*, preprint, 1991.**[5]**D. M. Campbell, J. G. Clunie, and W. K. Hayman,*Research problems in complex analysis*, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 527–572. MR**623497****[6]**Jacques Deny,*Systèmes totaux de fonctions harmoniques*, Ann. Inst. Fourier Grenoble**1**(1949), 103–113 (1950) (French). MR**0037414****[7]**P. M. Gauthier, M. Goldstein, and W. H. Ow,*Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities*, Trans. Amer. Math. Soc.**261**(1980), no. 1, 169–183. MR**576870**, https://doi.org/10.1090/S0002-9947-1980-0576870-5**[8]**P. M. Gauthier, M. Goldstein, and W. H. Ow,*Uniform approximation on closed sets by harmonic functions with Newtonian singularities*, J. London Math. Soc. (2)**28**(1983), no. 1, 71–82. MR**703466**, https://doi.org/10.1112/jlms/s2-28.1.71**[9]**Lester L. Helms,*Introduction to potential theory*, Robert E. Krieger Publishing Co., Huntington, N.Y., 1975. Reprint of the 1969 edition; Pure and Applied Mathematics, Vol. XXII. MR**0460666****[10]**M. Labrèche,*De l'approximation harmonique uniforme*, Doctoral thesis, University of Montreal, 1982.**[11]**A. A. Šaginjan,*The uniform and tangent harmonic approximation of continuous functions on arbitrary sets*, Mat. Zametki**9**(1971), 131–142 (Russian). MR**0293298****[12]**A. A. Shaginyan,*On tangential harmonic approximation and some related problems*, Complex analysis, I (College Park, Md., 1985–86) Lecture Notes in Math., vol. 1275, Springer, Berlin, 1987, pp. 280–286. MR**922308**, https://doi.org/10.1007/BFb0078360**[13]**A. A. Shaginyan and S. Ladouceur,*Uniform harmonic approximation on closed sets*, unpublished manuscript.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
31B05,
30E10,
30F15

Retrieve articles in all journals with MSC: 31B05, 30E10, 30F15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1149971-5

Article copyright:
© Copyright 1993
American Mathematical Society