Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

Towers are universally measure zero and always of first category


Author: Szymon Plewik
Journal: Proc. Amer. Math. Soc. 119 (1993), 865-868
MSC: Primary 04A15; Secondary 28A05, 54H05
MathSciNet review: 1152287
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We improve a few known results about universally measure zero and always of first category sets. Our main tool is the fact that any tower with respect to a Borel relation is such a set.


References [Enhancements On Off] (What's this?)

  • [1] Jacek Cichoń, On Banach numbers, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 11-12, 531–534 (1982) (English, with Russian summary). MR 654210 (83f:03045)
  • [2] D. Fremlin, Cichon's diagram, Seminaire Initiation à l'Analyse (G. Choquet, M. Rogalski, J. Saint-Raymond, eds.), no. 23, Univ. Pierre et Marie Curie, Paris, 1983/84.
  • [3] Peter Lars Dordal, Towers in [𝜔]^{𝜔} and ^{𝜔}𝜔, Ann. Pure Appl. Logic 45 (1989), no. 3, 247–276. MR 1032832 (91b:03088), http://dx.doi.org/10.1016/0168-0072(89)90038-9
  • [4] Edward Grzegorek, Solution of a problem of Banach on 𝜎-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 1-2, 7–10 (1981) (English, with Russian summary). MR 616191 (82h:04005)
  • [5] F. Hausdorff, Summen von $ {\aleph _1}$ mengen, Fund. Math. 26 (1936), 241-255.
  • [6] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York, 1966. MR 0217751 (36 #840)
  • [7] Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 0422027 (54 #10019)
  • [8] N. Lusin, Sur l'existence d'un ensemble non denombrable qui est de première catégorie dans tout ensemble parfait, Fund. Math. 2 (1921), 55-157.
  • [9] Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624 (86i:54037)
  • [10] Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam, 1980. MR 561709 (82e:03002)
  • [11] W. Sierpiński and E. Szpilrajn, Remarque sur le problème de la mesure$ ^{1}$, Fund. Math. 26 (1936), 256-261.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A15, 28A05, 54H05

Retrieve articles in all journals with MSC: 04A15, 28A05, 54H05


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1152287-4
PII: S 0002-9939(1993)1152287-4
Article copyright: © Copyright 1993 American Mathematical Society