MEASURABILITY PROPERTIES OF SETS OF VITALI'S TYPE

SLAWOMIR SOLECKI

(Communicated by Andreas R. Blass)

Abstract. Assume a group G acts on a set. Given a subgroup H of G, by an H-selector we mean a selector of the set of all orbits of H. We investigate measurability properties of H-selectors with respect to G-invariant measures.

Let us fix a set X and a group G acting on it. By μ we denote a G-invariant countably additive measure on X. The most common example of such a situation is an invariant measure on a group acting on itself by translations. Let H be a subgroup of G. By an H-selector (sometimes called a set of Vitali's type for H) we understand a set having exactly one point in common with each orbit of H. Measurability properties of selectors were first systematically studied by Cichoń, Kharazishvili, and Weglorz in [1].

Selectors are extremely useful in constructing sets nonmeasurable with respect to an invariant measure. The first example of a Lebesgue nonmeasurable set, due to Vitali [8], is just a Q-selector where Q is the group of rationals. Also for any finite invariant diffused measure on a group (acting on itself by translations) any H-selector for a countable subgroup H is nonmeasurable. In fact, in both cases above the constructed sets are nonmeasurable with respect to any invariant extension of a given measure. Kharazishvili in [3] and Erdős and Mauldin in [2] constructed a nonmeasurable set for any σ-finite invariant measure. Their example is the union of a family of H-selectors where H is a subgroup of cardinality ω_1. Strengthening the result from [2, 3] the author constructed in [6] sets nonmeasurable with respect to any invariant extension of a given σ-finite measure. These sets are subsets of H-selectors for an appropriately chosen countable group H.

In the present paper we take a closer look at measurability properties of selectors. Putting a freeness assumption on the action of G and assuming that G is uncountable we prove that for a σ-finite measure one can always find a countable group H such that no H-selector is measured by any invariant extension of the given measure. We show also that the situation for subgroups of full cardinality is just the opposite. Imposing a stronger freeness condition and

Received by the editors January 27, 1992 and, in revised form, March 19, 1992.

1991 Mathematics Subject Classification. Primary 28C10, 04A20; Secondary 43A05.

Key words and phrases. Invariant measures, nonmeasurable sets, selectors, extensions of measures.

©1993 American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
assuming that the cardinality of G has uncountable cofinality we prove that any
σ-finite ergodic measure admits an invariant extension which measures at least
one H-selector for any subgroup H of full cardinality. This was conjectured for
Lebesgue measure and for Borel uncountable subgroups of the reals by Cichoń.

Now we set some notation. We write $H^Y = \{hx: x \in Y, h \in H\}$ for
$H \subset G$ and $Y \subset X$, and $h^Y = \{h\}^Y$ for $h \in G$, $Y \subset X$. μ_* and μ^*
denote the inner and outer measure, respectively. We say that the action of G
is μ-free if $\mu^*(\{x \in X: hx = x\}) = 0$ for any $h \in G \setminus \{e\}$ (e is the identity of
G). Notice that the action of any subgroup of the group of all isometries of a
Euclidean space is μ-free for any invariant extension of Lebesgue measure. The
action of G is free if $\{x \in X: hx = x\} = \emptyset$ for any $h \in G \setminus \{e\}$. A measure
μ is called an invariant extension of μ if μ^* is an invariant measure, each μ-
measurable set is μ^*-measurable, and $\mu(Y) = \mu^*(Y)$ for any μ-measurable set
$Y \subset X$. μ is called ergodic if for any two measurable sets $A, B \subset X$ with
$\mu(A) > 0$ and $\mu(B) > 0$ there is an $h \in G$ such that $\mu(A \cap hB) > 0$. Note
that Lebesgue measure, or more generally Haar measure on a locally compact
group, is ergodic. $|A|$ denotes the cardinality of A. N stands for the set of
positive integers.

Our first theorem states that in the case of σ-finite measures one can always
find a countable subgroup H such that H-selectors behave just like Q-selectors
where Q is the group of the rationals on the real line.

Theorem 1. Let G be uncountable, and let μ be σ-finite. Suppose G acts μ-
freely on X. Then there exists a countable subgroup H of G such that each
H-selector is nonmeasurable with respect to any invariant extension of μ.

Proof. The terminology in this proof is from [6]. Since μ is σ-finite, one can
construct by transfinite induction using [6, Lemma 3.3] a countable family of μ-
measurable sets $\{A_n: n \in N\}$ such that $\mu(X \setminus \bigcup_{n=1}^{\infty} A_n) = 0$ and
A_n is infinitely covered by some countable H_n, $n \in N$. Let H be the subgroup of G
generated by $\bigcup_{n=1}^{\infty} H_n$. Let V be any H-selector, and let μ^* be an invariant extension of
μ for which V is measurable. Since $HV = X$ and H is countable, we have
$\mu^*(V) > 0$. But then $\mu^*(V \cap A_n) > 0$ for some $n \in N$, which contradicts [6,
Lemma 3.1]. □

Notice that the group H in the above theorem may be very different from the
group of the rationals. For example, if G is the group of all isometries of the
n-dimensional Euclidean space and μ is a G-invariant extension of Lebesgue
measure, then any countable infinite subgroup of G consisting of orthogonal
linear transformations works. We can choose such a subgroup to be isomorphic
to a free group with countably many generators ($n \geq 3$) or to the infinite cyclic
group ($n \geq 2$).

Now we turn our attention to selectors of subgroups of higher cardinality.
We need some new notions. By an ideal on a set Y we understand a family of
subsets of Y not containing Y, closed under taking subsets and finite unions.
If I is an ideal, then a family of subsets of Y is called disjoint modulo I if
the intersection of any two of its members is in I. Define $\text{sat}(I) = \min\{\kappa:\$
if \mathcal{T} is a disjoint modulo I family of subsets of Y then $|\mathcal{T}| < \kappa\}$
and $\text{add}(I) = \min\{|\mathcal{T}|: \mathcal{T} \subset I \text{ and } \bigcup \mathcal{T} \notin I\}$. As usual I is called a σ-ideal if
$\text{add}(I) > \omega$. Two ideals I_1, I_2 on Y are called coherent if $A_1 \cup A_2 \neq Y$ for
any $A_1 \in I_1$ and $A_2 \in I_2$. If I_1 and I_2 are coherent, we denote by $[I_1, I_2]$ the ideal generated by I_1 and I_2. Clearly $\text{add}(I_1, I_2) \leq \min(\text{add}(I_1), \text{add}(I_2))$.

An ideal I on X is called invariant if for any $A \in I$ and $h \in G$ we have $hA \in I$. For any cardinal number λ and any set Y let $[Y]^{< \lambda}$ (resp. $[Y]^{\leq \lambda}$) denote $\{A \subseteq Y : |A| < \lambda\}$ (resp. $\{A \subseteq Y : |A| = \lambda\}$, $\{A \subseteq Y : |A| \leq \lambda\}$).

We identify ordinal numbers with the sets of their predecessors. For a cardinal number λ let $\text{cf}(\lambda) = \min \{\kappa : \kappa$ is an ordinal and $\exists f : \kappa \rightarrow \lambda \lambda = \bigcup_{\alpha<\kappa} f(\alpha)\}$. A cardinal number κ is called regular if $\text{cf}(\kappa) = \kappa$. For any cardinal λ, $\text{cf}(\lambda)$ is a regular cardinal.

Lemma 1. Let I be an ideal on Y, and let κ be a regular cardinal with $\kappa \leq \text{add}(I)$ and $\kappa < \text{sat}(I)$. Then there exists an ideal J such that:

1. $J \supset I$;
2. $\text{add}(J) \geq \kappa$;
3. for each $A \notin I$ there is $B \in J \setminus I$ with $B \subseteq A$.

Proof. (The presented proof follows a suggestion of Blass which substantially simplifies the author's original argument.) Since $\kappa < \text{sat}(I)$, we can find a maximal disjoint modulo I family of cardinality $\geq \kappa$. Denote this family \mathcal{B}.

Let $J = \{B \subseteq Y : \exists C \subseteq I \exists \mathcal{P} \subseteq [\mathcal{B}]^{< \kappa} B \subseteq C \cup \bigcup \mathcal{P}\}$.

Obviously J fulfills (i). Since κ is regular and $\kappa \leq \text{add}(I)$, J fulfills (ii).

If $A \notin I$, then by maximality of \mathcal{B} there exists $B \in \mathcal{B}$ with $A \cap B \notin I$.

Clearly $A \cap B \in J$, so (iii) is satisfied, too. □

Notice that by Ulam's theorem if $\text{add}(I)$ is a successor cardinal, then $\text{add}(I) < \text{sat}(I)$. In this case (ii) means simply $\text{add}(J) \geq \text{add}(I)$. Nevertheless in general the condition $\kappa < \text{sat}(I)$ cannot be dropped. For if I and J are as in the above lemma we have $\text{add}(J) < \text{sat}(I)$ because applying (iii) and (i) one can construct $\text{add}(J)$ pairwise disjoint sets outside of I.

In the sequel we will use only the following corollary of Lemma 1. This corollary can also be inferred from a much deeper result of Weglorz [9]. The author decided to present the direct proof here because of its simplicity.

Corollary 1. Let κ be a cardinal, and let I be an ideal on Y. Then there exists an ideal J such that:

1. $J \supset I$;
2. $\text{add}(J) \geq \text{add}(I)$;
3. $\forall A \in [Y]^{< \kappa} \exists B \in J \cap [Y]^{< \kappa} B \subseteq A$.

Proof. If $[Y]^{< \kappa}$ is not contained in I, take $A \in [Y]^{< \kappa} \setminus I$ and define $J = \{B \subseteq Y : B \cap A \in I\}$. Then clearly (i), (ii), and (iii) are fulfilled. Assume that $[Y]^{< \kappa} \subseteq I$. If $\text{add}(I) > \kappa$ or $\text{sat}(I) \leq \kappa$, put $J = I$. Then (i) and (ii) are obviously satisfied. When $\text{add}(I) > \kappa$, we have $[Y]^{\kappa} \subseteq I$ as $[Y]^{< \kappa} \subseteq I$ and (iii) is fulfilled. When $\text{sat}(I) \leq \kappa$, (iii) is again true since each set from $[Y]^{\kappa}$ can be divided into κ many pairwise disjoint sets from $[Y]^{\kappa}$. If $\text{sat}(I) > \kappa \geq \text{add}(I)$, notice that $\text{add}(I)$ is a regular cardinal and apply Lemma 1 (add(I) playing the role of the κ in the lemma). As for (iii), by Lemma 1(iii) each set from $[Y]^{\kappa} \setminus I$ contains a set from $(I \setminus I) \cap [Y]^{< \kappa}$ and we have $J \cap [Y]^{< \kappa} \supset (I \setminus I) \cap [Y]^{< \kappa}$ since $[Y]^{< \kappa} \subseteq I$. □
Now we prove a lemma concerning extensions of invariant ideals. Our method of construction owes much to ideas of Kakutani and Oxtoby [5] and Hulanicki [4].

Lemma 2. Assume G is uncountable and acts freely on X. Let I be an invariant ideal on X. Then there exists an invariant ideal J such that:

(i) $J \supset I$;

(ii) $\text{add}(J) \geq \min(\text{add}(I), \text{cf}(|G|))$;

(iii) J contains an H-selector for each subgroup H of G with $|H| = |G|$.

Proof. Let W be a G-selector. Put $\lambda = |G|$ and $\kappa = \text{cf}(\lambda)$. Let $\{G_\alpha : \alpha < \kappa\}$ be a family of subgroups of G such that $G_\alpha \subset G_\beta$ for $\alpha < \beta < \kappa$, $|G_\alpha| < \lambda$, and $\bigcup_{\alpha < \kappa} G_\alpha = G$. For convenience we assume also that $G_\alpha \setminus \bigcup_{\xi < \alpha} G_\xi \neq \emptyset$.

Let $X_\alpha = (G_\alpha \setminus \bigcup_{\xi < \alpha} G_\xi)W$. We define an ideal on κ as

$$I' = \left\{ D \subset \kappa : \bigcup_{\alpha \in D} X_\alpha \in I \right\}.$$

First we show that I' is coherent with $[\kappa]^{<\kappa}$. Take $D \in [\kappa]^{<\kappa}$. Since κ is regular, we can find $\beta < \kappa$, which is greater than all elements of D. Take $h \in G_\beta \setminus \bigcup_{\xi < \beta} G_\xi$. Since G acts freely and W is a G-selector, $h(\bigcup_{\alpha \in D} X_\alpha) \cap \bigcup_{\alpha \in D} X_\alpha = \emptyset$, i.e., $h(\bigcup_{\alpha \in \kappa \setminus D} X_\alpha) \cup \bigcup_{\alpha \in \kappa \setminus D} X_\alpha = X$. Thus $\kappa \setminus D \not\in I'$ as I is invariant.

Put $\overline{I} = \{I', [\kappa]^{<\kappa}\}$. Then $\text{add}(\overline{I}) \geq \min(\text{add}(I), \kappa)$. Let \overline{J} be an ideal on κ extending \overline{I} whose existence is guaranteed by Corollary 1. Let

$$J' = \left\{ A \subset X : \exists D \in \overline{J} A \subset \bigcup_{\alpha \in D} X_\alpha \right\}.$$

J' is invariant. Let $h \in G$. Then $h \in G_\beta$ for some $\beta < \kappa$. It is enough to check that $hA \in J'$ for A of the form $\bigcup_{\alpha \in D} X_\alpha$ for some $D \in \overline{J}$. But then $hA \setminus A \subset \bigcup_{\alpha < \beta} X_\alpha \in J'$ since $\{\alpha : \alpha < \beta\} \in \overline{J}$. Notice that J' and I are coherent. Otherwise there are $A_1 \in I$, $A_2 \in J'$ such that $A_1 \cup A_2 = X$. Then there is $D \in \overline{J}$ such that $A_2 \subset \bigcup_{\alpha \in D} X_\alpha$. Thus $\bigcup_{\alpha \in \kappa \setminus D} X_\alpha \subset A_1$ whence $\kappa \setminus D \in I$. But $\overline{I} \subset \overline{J}$ and thus $\kappa \setminus D \in \overline{J}$, a contradiction.

Let $J = [J', I]$. Clearly J is invariant and $J \supset I$. Since $\text{add}(J') \geq \text{add}(\overline{I}) \geq \text{add}(I') \geq \min(\text{add}(I), \kappa)$, we have $\text{add}(J) \geq \min(\text{add}(I), \kappa)$. Thus (i) and (ii) are fulfilled. Now we show (iii). Let H be a subgroup of G with $|H| = \lambda$. Put $D = \{\alpha < \kappa : H \cap G_\alpha \setminus \bigcup_{\xi < \alpha} G_\xi \neq \emptyset\}$. Then $D \in [\kappa]^{<\kappa}$, so there is $D' \subset \bigcup_{\alpha \in D} X_\alpha$. There exist $y \in W$ and $h \in G$ with $x = hy$. We can also find $\beta \in D'$ such that $h \in G_\alpha$ for some $\alpha < \beta$. Then $\text{add}(J') \geq \text{add}(\overline{I}) \geq \text{add}(I') \geq \min(\text{add}(I), \kappa)$, we have $\text{add}(J) \geq \min(\text{add}(I), \kappa)$. Thus (i) and (ii) are fulfilled. Now we show (iii). Let H be a subgroup of G with $|H| = \lambda$. Put $D = \{\alpha < \kappa : H \cap G_\alpha \setminus \bigcup_{\xi < \alpha} G_\xi \neq \emptyset\}$. Then $D \in [\kappa]^{<\kappa}$, so there is $D' \subset \bigcup_{\alpha \in D} X_\alpha$. There exist $y \in W$ and $h \in G$ with $x = hy$. We can also find $\beta \in D'$ such that $h \in G_\alpha$ for some $\alpha < \beta$. Then $\text{add}(J') \geq \text{add}(\overline{I}) \geq \text{add}(I') \geq \min(\text{add}(I), \kappa)$, we have $\text{add}(J) \geq \min(\text{add}(I), \kappa)$.

The following lemma is essentially due to Szpilrajn [7, §2].

Lemma 3 (Szpilrajn). Let μ be an invariant measure on X, and let J be an invariant σ-ideal on X such that $\mu_*(A) = 0$ for $A \in J$. Then there exists an
invariant extension of μ defined on the σ-algebra generated by the σ-algebra of μ-measurable sets and J.

The next theorem shows that under certain assumptions a subgroup of full cardinality with properties like those in Theorem 1 cannot be constructed.

Theorem 2. Assume $\text{cf}(|G|) > \omega$. Suppose also that G acts freely on X. Let μ be σ-finite and ergodic. Then there exists an invariant extension μ of μ such that for each subgroup H of G with $|H| = |G|$ there is a μ-measurable H-selector.

Proof. Consider I_μ the invariant σ-ideal of μ-measure 0 sets. Let J be an ideal extending I_μ produced in Lemma 2. As $\text{add}(J) \geq \min(\text{add}(I_\mu), \text{cf}(|G|)) > \omega$, J is a σ-ideal. Now we show that the assumption of Lemma 3 is fulfilled. Suppose $\mu_*(A) > 0$ for some $A \in J$. As J is closed under taking subsets, we can assume that A is μ-measurable and $\mu(A) > 0$. Using the σ-finiteness and the ergodicity of μ we find a countable set $K \subseteq G$ with $\mu(X \setminus KA) = 0$, i.e., $X \setminus KA \in I_\mu \subseteq J$. As $KA \in J$ we get a contradiction. Thus $A \notin J$. Now Lemma 3 yields an invariant extension μ of μ for which all sets from J are measurable. In particular, for each subgroup H of cardinality $|G|$ there is a μ-measurable H-selector. □

Since $\text{cf}(2^\omega) > \omega$, Theorem 2 gives the following corollary. (The “if” direction of the second part of the corollary can be shown by the same argument as in the standard proof that any Q-selector, where Q denotes the rationals, is not Lebesgue measurable.)

Corollary 2. There exists a translation invariant extension of Lebesgue measure on the real line which measures at least one H-selector for each group of translations H with $|H| = 2^\omega$. In particular, assuming the Continuum Hypothesis, each H-selector of a subgroup H of the reals is nonmeasurable with respect to any invariant extension of Lebesgue measure if and only if H is countable and dense.

In the context of Theorems 1 and 2 the following question seems to be interesting. Let G act freely on X, and let μ be invariant, σ-finite, and ergodic. Does there exist an invariant extension of μ which measures at least one H-selector for each uncountable subgroup H of G? The author does not know the answer even for Lebesgue measure on the real line (without assuming the Continuum Hypothesis of course).

References

Mathematical Institute, University of Wroclaw, Pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland

Current address: Department of Mathematics, California Institute of Technology, Pasadena, California 91125