Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The evolution operator approach to functional-differential equations with delay


Author: Wolfgang M. Ruess
Journal: Proc. Amer. Math. Soc. 119 (1993), 783-791
MSC: Primary 34K30; Secondary 34G20, 47H15, 47N20
DOI: https://doi.org/10.1090/S0002-9939-1993-1154248-8
MathSciNet review: 1154248
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The nonlinear nonautonomous functional differential equation $ \dot x(t) \in B(t)\,x(t) + F(t,{x_t}),\;t \geqslant s,\,{x_s} = \varphi $, is considered. The representation of the solution to this equation via the associated evolution operator is extended from the single-valued case to the general case of multivalued operators $ B(t)$.


References [Enhancements On Off] (What's this?)

  • [1] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, 1976. MR 0390843 (52:11666)
  • [2] D. W. Brewer, A nonlinear semigroup for a functional differential equation, Trans. Amer. Math. Soc. 236 (1978), 173-191. MR 0466838 (57:6712)
  • [3] -, A nonlinear contraction semigroup for a functional differential equation, Volterra Equations (S.-O. Londen and O. J. Staffans, eds.), Lecture Notes in Math., vol. 737, Springer, New York, 1979, pp. 35-44. MR 551026 (81h:47057)
  • [4] -, The asymptotic stability of a nonlinear functional differential equation of infinite delay, Houston J. Math. 6 (1980), 321-330. MR 597773 (81k:34081)
  • [5] -, Locally Lipschitz continuous functional differential equations and nonlinear semigroups, Illinois J. Math. 26 (1982), 374-381. MR 658448 (83i:34091)
  • [6] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis (E. Zarantonello, ed.), Academic Press, New York, 1971, pp. 101-156. MR 0394323 (52:15126)
  • [7] -, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland Math. Studies, vol. 5, North-Holland, Amsterdam, 1973.
  • [8] M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57-94. MR 0300166 (45:9214)
  • [9] J. Diestel, Geometry of Banach spaces--selected topics, Lecture Notes in Math., vol. 485, Springer, New York, 1975. MR 0461094 (57:1079)
  • [10] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys Monographs, vol. 15, Amer. Math. Soc., Providence, RI, 1977. MR 0453964 (56:12216)
  • [11] G. Duvaut and J. L. Lions, Inequalities in mechanics and physics, Grundlehren Math. Wiss., vol. 219, Springer, New York, 1976. MR 0521262 (58:25191)
  • [12] J. Dyson and R. Villella Bressan, Functional differential equations and non-linear evolution operators, Proc. Roy. Soc. Edinburgh Sect. A 75 (1975/76), 223-234. MR 0442402 (56:784)
  • [13] -, Some remarks on the asymptotic behavior of a nonautonomous, nonlinear functional differential equation, J. Differential Equations 25 (1977), 275-287. MR 0486903 (58:6595)
  • [14] -, Semigroups of translation associated with functional and functional differential equations, Proc Roy. Soc. Edinburgh Sect. A 82 (1979), 171-188. MR 532900 (80i:34113)
  • [15] H. Flaschka and M. J. Lehman, On semigroups of nonlinear operators and the solution of the functional differential equation $ \dot x(t) = F({x_t})$, J. Math. Anal. Appl. 49 (1975), 649-658. MR 0361959 (50:14401)
  • [16] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. MR 0226230 (37:1820)
  • [17] N. Pavel, Nonlinear evolution operators and semigroups, Lecture Notes in Math., vol. 1260, Springer, New York, 1987. MR 900380 (88j:47087)
  • [18] A. T. Plant, Nonlinear semigroups of translations in Banach space generated by functional differential equations, J. Math. Anal. Appl. 60 (1977), 67-74. MR 0447745 (56:6055)
  • [19] W. M. Ruess and W. H. Summers, Operator semigroups for functional differential equations with delay, Trans. Amer. Math. Soc. (to appear). MR 1214785 (94g:34135)
  • [20] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418. MR 0382808 (52:3690)
  • [21] G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1-12. MR 0348224 (50:722)
  • [22] -, Asymptotic stability for abstract nonlinear functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225-230. MR 0402237 (53:6058)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34K30, 34G20, 47H15, 47N20

Retrieve articles in all journals with MSC: 34K30, 34G20, 47H15, 47N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1154248-8
Keywords: Functional differential equations with delay, stability, nonlinear accretive operators, nonlinear evolution systems
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society