Zero entropy factors of topological flows
Authors:
F. Blanchard and Y. Lacroix
Journal:
Proc. Amer. Math. Soc. 119 (1993), 985992
MSC:
Primary 54H20; Secondary 28D20
MathSciNet review:
1155593
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The maximal zero entropy factor of a topological flow is defined using entropy pairs and explicitly given for some simple cartesian products. As a consequence, it is proved that only the trivial flow is disjoint from all flows whose maximal zero entropy factor is trivial.
 [AKM]
R.
L. Adler, A.
G. Konheim, and M.
H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 0175106
(30 #5291), http://dx.doi.org/10.1090/S00029947196501751069
 [Bl1]
F.
Blanchard, Fully positive topological entropy and topological
mixing, Symbolic dynamics and its applications (New Haven, CT, 1991)
Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992,
pp. 95–105. MR 1185082
(93k:58134), http://dx.doi.org/10.1090/conm/135/1185082
 [Bl2]
, A disjointness theorem involving topological entropy, preprint, 1991.
 [EG]
Robert
Ellis and W.
H. Gottschalk, Homomorphisms of transformation
groups, Trans. Amer. Math. Soc. 94 (1960), 258–271. MR 0123635
(23 #A960), http://dx.doi.org/10.1090/S00029947196001236351
 [F]
Harry
Furstenberg, Disjointness in ergodic theory, minimal sets, and a
problem in Diophantine approximation, Math. Systems Theory
1 (1967), 1–49. MR 0213508
(35 #4369)
 [AKM]
 R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309319. MR 0175106 (30:5291)
 [Bl1]
 F. Blanchard, Full positive topological entropy and topological mixing, Symbolic Dynamics and Applications (in honor of R. L. Adler), Contemp. Math., Amer. Math. Soc., Providence, RI (to appear). MR 1185082 (93k:58134)
 [Bl2]
 , A disjointness theorem involving topological entropy, preprint, 1991.
 [EG]
 R. Ellis and W. H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc. 94 (1960), 258271. MR 0123635 (23:A960)
 [F]
 H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Systems Theory 1 (1967), 149. MR 0213508 (35:4369)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
54H20,
28D20
Retrieve articles in all journals
with MSC:
54H20,
28D20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199311555932
PII:
S 00029939(1993)11555932
Keywords:
Topological entropy,
maximal zero entropy factor,
disjointness
Article copyright:
© Copyright 1993
American Mathematical Society
