Zero entropy factors of topological flows

Authors:
F. Blanchard and Y. Lacroix

Journal:
Proc. Amer. Math. Soc. **119** (1993), 985-992

MSC:
Primary 54H20; Secondary 28D20

MathSciNet review:
1155593

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The maximal zero entropy factor of a topological flow is defined using entropy pairs and explicitly given for some simple cartesian products. As a consequence, it is proved that only the trivial flow is disjoint from all flows whose maximal zero entropy factor is trivial.

**[AKM]**R. L. Adler, A. G. Konheim, and M. H. McAndrew,*Topological entropy*, Trans. Amer. Math. Soc.**114**(1965), 309–319. MR**0175106**, 10.1090/S0002-9947-1965-0175106-9**[Bl1]**F. Blanchard,*Fully positive topological entropy and topological mixing*, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 95–105. MR**1185082**, 10.1090/conm/135/1185082**[Bl2]**-,*A disjointness theorem involving topological entropy*, preprint, 1991.**[EG]**Robert Ellis and W. H. Gottschalk,*Homomorphisms of transformation groups*, Trans. Amer. Math. Soc.**94**(1960), 258–271. MR**0123635**, 10.1090/S0002-9947-1960-0123635-1**[F]**Harry Furstenberg,*Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation*, Math. Systems Theory**1**(1967), 1–49. MR**0213508**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54H20,
28D20

Retrieve articles in all journals with MSC: 54H20, 28D20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1155593-2

Keywords:
Topological entropy,
maximal zero entropy factor,
disjointness

Article copyright:
© Copyright 1993
American Mathematical Society