VALUE SETS OF POLYNOMIALS OVER FINITE FIELDS

DAQING WAN, PETER JAU-SHYONG SHIUE, AND C. S. CHEN

(Communicated by William W. Adams)

Dedicated to the memory of Professor L. Kuipers

Abstract. Let \(F_q \) be the finite field of \(q \) elements, and let \(V_f \) be the number of values taken by a polynomial \(f(x) \) over \(F_q \). We establish a lower bound and an upper bound of \(V_f \) in terms of certain invariants of \(f(x) \). These bounds improve and generalize some of the previously known bounds of \(V_f \). In particular, the classical Hermite-Dickson criterion is improved. Our bounds also give a new proof of a recent theorem of Evans, Greene, and Niederreiter. Finally, we give some examples which show that our bounds are sharp.

1. Introduction

Let \(F_q \) be the finite field of \(q \) elements with characteristic \(p \). If \(f(x) \) is a polynomial over \(F_q \) of degree smaller than \(q \), a basic question in the theory of finite fields is to estimate the size \(V_f \) of the value set \(\{ f(a) \mid a \in F_q \} \). Because a polynomial \(f(x) \) cannot assume a given value of more than \(\deg(f) \) times over a field, one has the trivial bound

\[
q - \left\lfloor \frac{q - 1}{\deg(f)} \right\rfloor + 1 \leq V_f \leq q.
\]

If the lower bound in (1.1) is attained, \(f(x) \) is called a minimal value set polynomial. The classification of minimal value set polynomials is the subject of several papers; see [1, 4, 5, 8]. The results in these papers assume that \(q \) is large compared to the degree of \(f(x) \). For Dickson polynomials, Chou, Gomez-Calderon, and Mullen [3] obtained an explicit formula for \(V_f \).

If the upper bound in (1.1) is attained, \(f(x) \) is called a permutation polynomial. The classification of permutation polynomials has received considerable attention. See the book of Lidl and Niederreiter [7] and the very recent survey article by Mullen [9]. If \(f(x) \) is not a permutation polynomial, the following upper bound is obtained in [11]:

\[
V_f \leq \left[q - \frac{q - 1}{\deg(f)} \right].
\]

1991 Mathematics Subject Classification. Primary 11T06, 11T99.

The research of the second author was partially supported by the Research Grants & Fellowship Committee of the University of Nevada, Las Vegas.
This upper bound coincides with the conjectural upper bound of Mullen [9].

In §§2 and 3 of this paper, we shall give improvements of (1.1) and (1.2). Let \(u_p(f) \) be the smallest positive integer \(k \) such that \(\sum_{x \in F_q} f(x)^k \neq 0 \). Like the degree of \(f(x) \), \(u_p(f) \) is invariant under linear transformations. Our lower bound depends on the invariant \(u_p(f) \). Our upper bound depends on a similar invariant involving \(p \)-adic liftings, see §3. It is not strange that \(V_f \) is related to \(u_p(f) \). In terms of the invariant \(u_p(f) \), the well-known Hermite-Dickson criterion states that \(f(x) \) is a permutation polynomial if and only if \(u_p(f) = q - 1 \). Our results improve the Hermite-Dickson criterion and give a new proof of a recent theorem of Evans, Greene, and Niederreiter [3]. In §4, we give some examples for which our bounds are sharp.

2. A LOWER BOUND

Let \(f(x) \) be a polynomial over \(F_q \). Define \(u_p(f) \) to be the smallest positive integer \(k \) such that \(\sum_{x \in F_q} f(x)^k \neq 0 \). If such \(k \) do not exist, define \(u_p(f) = \infty \). It is easy to check that if \(u_p(f) < \infty \), then \(u_p(f) < q \). One checks that \(u_p(f) \) is invariant under linear transformations. That is, for \(a \in F_q^* \) and \(b \in F_q \), we have \(u_p(af + b) = u_p(f(ax + b)) = u_p(f) \). Furthermore, \(u_p(f) \) is invariant under substitutions of permutation polynomials, i.e., \(u_p(f) = u_p(f \circ g) \) for all permutation polynomials \(g(x) \).

Theorem 2.1. If \(u_p(f) < \infty \), then \(V_f \geq u_p(f) + 1 \).

Proof. Let \(N_a \) be the number of solutions of the equation \(f(x) = a \) over \(F_q \). Then

\[
N_a = \left\{ \begin{array}{ll}
1 - (f(x) - a)^{q-1} & \text{if } u_p(f) < \infty, \\
0 & \text{otherwise}.
\end{array} \right.
\]

(2.1)

\[
\equiv - \sum_{k=1}^{q-1} \left(\sum_{x \in F_q} \binom{q-1}{k} f(x)^k \right) (-a)^{q-1-k} \quad (\text{mod } p).
\]

Since \(\binom{q-1}{k} \neq 0 \) (mod \(p \)) for \(1 \leq k \leq q - 1 \), by the definition of \(u_p(f) \) we conclude that the polynomial \(N_a \) (as a polynomial of \(a \)) has degree \(q - 1 - u_p(f) \). Since \(N_a = 0 \) for all \(a \) not in the value set of \(f(x) \), it follows that there are at least \(q - V_f \) elements \(a \in F_q \) such that \(N_a \equiv 0 \) (mod \(p \)). Thus, \(q - 1 - u_p(f) \geq q - V_f \). This proves that \(V_f \geq u_p(f) + 1 \).

Remark 2.2. If \(f(x) \) is a permutation polynomial, then the Hermite-Dickson criterion shows that \(u_p(f) = q - 1 \). Thus, Theorem 2.1 is sharp for permutation polynomials. If \(f(x) \) is the monomial \(x^d \), then one checks that \(u_p(f) = (q - 1)/(d, q - 1) \) and \(V_f = (q - 1)/(d, q - 1) + 1 \). Thus, Theorem 2.1 is also sharp for monomials. This shows that Theorem 2.1 is sharp for polynomials of all degrees. For more sharp examples, see §4. If \(V_f = 1 \), \(f \) must be a constant. If \(V_f = 2 \), Theorem 2.1 shows that \(u_p(f) = 1 \). This implies that \(\deg(f) = q - 1 \).

Remark 2.3. Equation (2.1) shows that if \(u_p(f) = \infty \), then \(N_a \) is divisible by \(p \) for all \(a \in F_q \). This shows that if \(\deg(f) < p \), then \(u_p(f) < \infty \). In particular, \(u_p(f) \) is always finite for the prime field \(F_p \) and Theorem 2.1 can be applied unconditionally to the prime field \(F_p \). Polynomials with \(u_p(f) = \infty \)
have also appeared in the recent paper [3] by Evans, Greene, and Niederreiter. In fact, we shall show in the next section that our bound can be used to give a new proof of their main theorem. We note that if \(f(x) \equiv s \circ g \circ h(x) \pmod{(x^q - x)} \), where \(h(x) \) is a permutation polynomial, \(g(x) = \sum_i a_i x^{p^i} \) is a \(p \)-linearized nonpermutation polynomial and \(s(x) \) is any polynomial, then \(u_p(f) = \infty \).

Corollary 2.4. Let \(\deg(f) = d \) and \(u_p(f) < \infty \). Then

\[
V_f \geq \begin{cases}
\left[\frac{(q-1)}{d}\right] + 1 & \text{if } d \mid q - 1, \\
\left[\frac{(q-1)}{d}\right] + 2 & \text{if } d \nmid q - 1.
\end{cases}
\]

Proof. Let \(f(x) = a_d x^d + \cdots + a_0 \in \mathbb{F}_q(x) \). One checks that \(u_p(f) = \left[\frac{(q-1)}{d}\right] \) if \(d \mid q - 1 \). Otherwise, \(u_p(f) \geq \left[\frac{(q-1)}{d}\right] + 1 \). The corollary follows.

Corollary 2.5. Let \(3 \leq d < p \). Assume that \(d \) does not divide \(q - 1 \). Then

(2.2) \[
V_f \geq \left[\frac{q-1}{d}\right] + \frac{2(q-1)}{d^2}.
\]

Proof. Assume that (2.2) is not true. Since \(3 \leq d < p \), the theorem of Gomez-Calderon [4] shows that \(V_f = \left[\frac{(q-1)}{d}\right] + 1 \). Since \(d \) does not divide \(q - 1 \) and \(u_p(f) < \infty \) \((d < p)\), Corollary 2.5 shows that \(V_f > \left[\frac{(q-1)}{d}\right] + 1 \). This is a contradiction. The corollary is proved.

3. An Upper Bound

To describe the upper bound, we need \(p \)-adic liftings. Let \(\mathbb{Q}_p \) be the field of \(p \)-adic rational numbers. Let \(K \) be the unique unramified extension of \(\mathbb{Q}_p \) with residue field \(\mathbb{F}_q \). Let \(T \) be the set of Teichmüller liftings of \(\mathbb{F}_q \) in \(K \). \(T \) is the set of all \(b \in K \) satisfying \(b^q = b \). Let \(F(x) \) be a lifting of \(f(x) \) to \(K(x) \). Define \(U_q(f) \) to be the smallest positive integer \(k \) such that

(3.1) \[
\sum_{x \in T} F(x)^k \not\equiv 0 \pmod{pk}.
\]

One checks that \(U_q(f) \) is independent of the choice of the lifting \(F(x) \). Furthermore, \(U_q(f) \) is invariant under linear transformations, in fact, invariant under substitutions of permutation polynomials. Unlike \(u_p(f) \), \(U_q(f) \) is always finite as we shall show in the proof of Theorem 3.1. If \(f(x) \) is a permutation polynomial, then \(u_p(f) = U_q(f) = q - 1 \).

Theorem 3.1. Assume that \(f \in \mathbb{F}_q(x) \) is not a permutation polynomial. Then

(3.2) \[
V_f \leq q - U_q(f).
\]

In order to prove Theorem 3.1, we need to use the following lemma from [11].

Lemma 3.2. Let \(T = \{t_1, \ldots, t_q\} \) with \(t_q = 0 \). Let \(w \) be an integer satisfying \(1 \leq w \leq q - 1 \). Given \(p \)-adic integers \(b_1, \ldots, b_w, a_{w+1}, \ldots, a_q \) in \(K \), there are uniquely determined \(p \)-adic integers \(a_1, \ldots, a_w \) in \(K \) such that

(3.3) \[
\sum_{i=1}^{q} (t_i + pa_i)^k = pkb_k, \quad 1 \leq k \leq w.
\]
Proof of Theorem 3.1. Let \(w = q - V_f \). Since \(f(x) \) is not a permutation polynomial, we have \(w \geq 1 \). Let \(F(x) \) be a lifting of \(f(x) \) to \(K[x] \). By the definition of \(w \), we can reorder the sequence \(\{F(t_i)\} \) as \(\{c_i\} \) such that \(c_{w+1}, \ldots, c_q \) are the representatives of the residue classes modulo \(p \) of the sequence \(\{F(t_i)\} \). By assuming \(f(0) = 0 \), we may assume that \(c_q \) is divisible by \(p \).

We claim that \(w \geq U_q(f) \), i.e., \(V_f \leq q - U_q(f) \). This implies that \(U_q(f) \) is always finite. If the claim is not true, i.e., \(w \leq U_q(f) - 1 \), we derive a contradiction as follows: For all \(1 \leq k \leq w \), the definition of \(U_q(f) \) shows that

\[
\sum_{i=1}^{q} c_i^k = \sum_{i=1}^{k} F_i(t_i) = pk b_k ,
\]

where the \(b_k \) are \(p \)-adic integers. By Lemma 3.2, there are \(p \)-adic integers \(a_1, \ldots, a_w \) such that

\[
\sum_{i=1}^{w} a_i^k + \sum_{i=w+1}^{q} c_i^k = pk b_k , \quad 1 \leq k \leq w.
\]

Furthermore, none of the \(a_i \) is congruent to any \(c_j \). Thus, we have

\[
\sum_{i=1}^{w} a_i^k = \sum_{i=1}^{w} a_i^k + \sum_{i=w+1}^{q} c_i^k - pk b_k
\]

\[
= \left(\sum_{i=1}^{w} a_i^k + \sum_{i=w+1}^{q} c_i^k - pk b_k \right) + \sum_{i=1}^{w} c_i^k
\]

\[
= \sum_{i=1}^{w} c_i^k , \quad 1 \leq k \leq w.
\]

From this equation and Newton’s formula about symmetric polynomials, we deduce that the two polynomials \(\prod_{i=1}^{w} (x - a_i) \) and \(\prod_{i=1}^{w} (x - c_i) \) have the same coefficients (note that we are in characteristic zero). Thus, their roots \(\{a_i\} \) and \(\{c_i\} \) are the same. This contradicts the fact that none of the \(a_i \) is congruent to any \(c_j \). Thus, the claim is true and the theorem is proved.

Remark. One checks that

\[
U_p(f) \geq U_q(f) \geq \left[\frac{q - 1}{\deg(f)} \right].
\]

Thus, Theorem 2.1 and Theorem 3.1 improve (1.1) and (1.2). The second inequality in (3.7) is an equality if and only if \(\deg(f) \) divides \(q - 1 \). This and Theorem 3.1 show that the bound (1.2) is not sharp if \(\deg(f) \) does not divide \(q - 1 \).

Corollary 3.3. Assume that \(u_p(f) + U_q(f) > q - 1 \). Then either \(u_p(f) = \infty \) or \(f(x) \) is a permutation polynomial over \(F_q \).

Proof. Assume that \(u_p(f) \neq \infty \). If \(f(x) \) is not a permutation polynomial, Theorem 2.1 and Theorem 3.1 would imply that \(1 + u_p(f) \leq V_f \leq q - U_q(f) \). Thus, \(u_p(f) + U_q(f) \leq q - 1 \). This contradicts our assumption.

In view of (3.7) and Corollary 3.3, we have
Corollary 3.4. A polynomial \(f(x) \) over \(\mathbb{F}_q \) is a permutation polynomial over \(\mathbb{F}_q \) if and only if \(q - 1 - [(q - 1)/\deg(f)] < u_p(f) < \infty \).

If \(q = p \), then \(u_p(f) = U_q(f) \) is always finite. Corollary 3.3 implies that

Corollary 3.5 (Roger). Let \(q = p \). A polynomial \(f(x) \) over \(\mathbb{F}_q \) is a permutation polynomial over \(\mathbb{F}_q \) if and only if \(u_p(f) > (p - 1)/2 \).

Remark. The Hermite-Dickson criterion says that \(f(x) \) is a permutation polynomial if and only if \(u_p(f) = q - 1 \). In the case \(q = p \), this criterion was improved by Roger [10] as stated in Corollary 3.5. The theorem of Rogers was rediscovered by Kurbatov and Starkov [6]. Corollary 3.3 improves both the Hermite-Dickson criterion and the Rogers Theorem.

Corollary 3.6. Let \(f(x) = g^2(x) \), where \(g(x) \) is a permutation polynomial. Assume that \(q \) is odd. Then \(1 + u_p(f) = V_f = q - U_q(f) \). In particular, both Theorem 2.1 and Theorem 3.1 are sharp in this case.

Proof. It is trivial if \(g(x) = x \). In the general case, since \(V_f \), \(u_p(f) \), and \(U_q(f) \) are all invariant under substitutions of permutation polynomials, we are reduced to the case \(g(x) = x \).

Corollary 3.7 (Evans, Greene, and Niederreiter [3]). Let \(f(x) \in \mathbb{F}_q[[x]] \) with \(\deg(f) < q \) be such that \(f(x) + cx \) is a permutation polynomial for at least \(\lfloor q/2 \rfloor \) values of \(c \in \mathbb{F}_q \). Then the following properties hold.

(i) For every \(c \in \mathbb{F}_q \) for which \(f(x) + cx \) is not a permutation polynomial, \(f(x) + cx \) maps \(\mathbb{F}_q \) into \(\mathbb{F}_q \) in such a way that each of its values has a multiple of \(p \) distinct preimages, i.e., \(u_p(f(x) + cx) = \infty \).

(ii) \(f(x) + cx \) is a permutation polynomial for at least \(q - (q - 1)/(p - 1) \) values of \(c \in \mathbb{F}_q \).

(iii) \(f(x) = ax + g(x^p) \) for some \(a \in \mathbb{F}_q \) and \(g(x) \in \mathbb{F}_q[[x]] \).

Proof. If \(c \in \mathbb{F}_q \) is such that \(f(x) + cx \) is a permutation polynomial, then we have \(u_p(f(x) + cx) = U_q(f(x) + cx) = q - 1 \). If now \(f(x) + cx \) is a permutation polynomial for at least \(\lfloor q/2 \rfloor \) values of \(c \in \mathbb{F}_q \), then for \(0 < k < q - 1 \), the congruence equation \(\sum_{x \in T}(F(x) + cx)^k \equiv 0 \pmod{pk} \) in \(c \) of degree at most \((k - 1) \) has at least \(\lfloor q/2 \rfloor \) solutions \(c \in T \). This implies that the \(p \)-adic integral polynomial \(\sum_{x \in T}(F(x) + cx)^k \) in \(c \) of degree at most \((k - 1) \) is identically congruent to zero modulo \(pk \) for all \(k \leq \lfloor q/2 \rfloor \). Thus, \(U_q(f(x) + cx) \geq \lfloor q/2 \rfloor + 1 \) for all \(c \in \mathbb{F}_q \), and \(u_p(f(x) + cx) \geq \lfloor q/2 \rfloor + 1 \) for all \(c \in \mathbb{F}_q \). Corollary 3.3 shows that for each \(c \in \mathbb{F}_q \), either \(u_p(f(x) + cx) = \infty \) or \(f(x) + cx \) is a permutation polynomial. This proves (i) and shows that for all \(c \in \mathbb{F}_q \),

\[
s_n(c) = \sum_{a \in \mathbb{F}_q} (f(a) + ca)^n = 0, \quad 1 \leq n \leq q - 2.
\]

Thus, \(s_n(y) \) is identically zero. As in [3], (iii) follows easily by comparing the coefficients of \(y^{n-1} \) in \(s_n(y) \), where \(n \) is not divisible by \(p \). Also as in [3], (ii) follows easily from (i), because to each \(c \in \mathbb{F}_q \) for which \(f(x) + cx \) is not a permutation polynomial there correspond at least \(p - 1 \) distinct nonzero solutions \(x \in \mathbb{F}_q \) to \(f(x) + cx = f(0) \). Thus, there are at most \((q - 1)/(p - 1) \) values of such \(c \).
4. More Sharp Examples

In this section, we consider polynomials of the form \(x^r f(x^{(q-1)/d}) \), where \(d \) is a positive integer dividing \(q - 1 \) and \(r \) is relatively prime to \((q - 1)\). The question of when such a polynomial is a permutation polynomial was treated in [12]. The size of the value set for this type of polynomials can be determined in a similar way. We show that our bounds are sharp for some of the polynomials of this type.

If \(d = 1 \), we get monomials \(x^r \) which are permutation polynomials since \(r \) is relatively prime to \(q - 1 \). Thus, Theorem 2.1 is sharp.

If \(d = 2 \), then we get polynomials of the form \(g_a(x) = x^r(x^{(q-1)/2} + a) \), where \(a \in \mathbb{F}_q \) (excluding the trivial case \(a = 0 \)). From the work in [12], we know that \(g_a(x) \) is a permutation polynomial if and only if \(a^2 \neq 1 \) and \((a^2 - 1) \) is a quadratic residue of \(\mathbb{F}_q \). If \(g_a(x) \) is a permutation polynomial, then Theorem 2.1 is sharp. If \(g_a(x) \) is not a permutation polynomial, then one checks that the value set \(V(g_a(x)) = (q + 1)/2 \). Let \(\psi \) be the multiplicative quadratic character of \(\mathbb{F}_q \). Then

\[
\sum_{x \in \mathbb{F}_q} g_a(x)^k = \sum_{\psi(x) = 1} x^{rk}(a + 1)^k + \sum_{\psi(x) = -1} x^{rk}(a - 1)^k.
\]

Table I. \(f(x) = x^7 + ax \)

<table>
<thead>
<tr>
<th>(q)</th>
<th>(a)</th>
<th>(\frac{q-1}{\deg(f)} + 1)</th>
<th>(1 + u_p(f))</th>
<th>(V_f)</th>
<th>(q - U_q(f))</th>
<th>(q - \frac{q-1}{\deg(f)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>14</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>3</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>
From this equation and the assumption that $a^2 = 1$ or $a^2 - 1$ is a quadratic nonresidue, we compute that $u_p(g_a(x)) = (q - 1)/2$. In a similar way, we show that $U_q(g_a(x)) = (q - 1)/2$. Thus, both Theorem 2.1 and Theorem 3.1 are sharp if $a^2 = 1$ or $a^2 - 1$ is a quadratic nonresidue.

For a general d, the method in [12] can be used to prove that the cardinality of the value set of $g_{r,d} = x^f(x^{(q-1)/d})$ is of the form $1 + i(q - 1)/d$ for some integer i with $1 \leq i \leq d$. If $i = d$, then we get permutation polynomials. Thus, Theorem 2.1 is sharp. If $i = d - 1$, then the value set has cardinality $q - (q - 1)/d$ and it can be proved that $u_p(g_{r,d}) = U_q(g_{r,d}) = (q - 1)/d$. Thus, Theorem 3.1 is sharp in this case. If $i = 1$, then the value set has cardinality $1 + (q - 1)/d$ and it can be proved that $u_p(g_{r,d}) = U_q(g_{r,d}) = (q - 1)/d$. Thus, Theorem 2.1 is sharp in this case.

Table I compares the various bounds and the value set of the polynomials of the form $f_a(x) = x^7 + ax = x(x^{(19-1)/3} + a)$. In the above notation, $q = 19$, $r = 1$, and $d = 3$. We note that $f_a(x)$ is a permutation polynomial if $a = 0, 5, 16, 17$.

ACKNOWLEDGMENT

We would like to thank Ronald Evans for several helpful comments.

REFERENCES

5. J. Gomez-Calderon and D. J. Madden, Polynomials with small value sets over finite fields, J. Number Theory 28 (1988), 167-188.
10. L. J. Rogers, Note on functions proper to represent a substitution of a prime number of letters, Messenger Math. 21 (1981), 44-47.
12. D. Wan and R. Lidl, Permutation polynomials of the form $x^f(x^{(q-1)/d})$ and their group structure, Monatsh Math. 112 (1991), 149-163.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF NEVADA AT LAS VEGAS, LAS VEGAS, NEVADA 89154