Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The unicellularity of contractions of class $ C\sb 0$


Author: Cheng Zu Zou
Journal: Proc. Amer. Math. Soc. 119 (1993), 775-782
MSC: Primary 47A15; Secondary 47A45, 47A65
MathSciNet review: 1163329
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we shall generalize the unicellularity of operators on finite-dimensional spaces to that of the contraction of class $ {C_0}$ on Hilbert spaces.

We prove:

(1) Each nilpotent operator on Hilbert space is Banach reducible (Theorem 3).

(2) A contraction $ T$ of class $ {C_0}$ on Hilbert space is unicellular if and only if $ T$ has one-point spectrum and every invariant subspace for $ T$ is cyclic (Theorem 6).

(3) A contraction $ T$ of class $ {C_0}$ on Hilbert space is unicellular if and only if $ T$ has one-point spectrum and all invariant subspaces of $ T$ are hyperinvariant subspaces of $ T$ (Theorem 8).


References [Enhancements On Off] (What's this?)

  • [1] C. Apostol and D. Voiculescu, Closure of similarity orbits of nilpotent and quasinilpotent Hilbert space operators, preprint, not for publication, 1977.
  • [2] Hari Bercovici, 𝐶₀-Fredholm operators. II, Acta Sci. Math. (Szeged) 42 (1980), no. 1-2, 3–42. MR 576933 (83c:47016b)
  • [3] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR 0133008 (24 #A2844)
  • [4] B. S.-Nagy and C. Foias, Analyse harmonique des operateurs delespace de Hilbert, Akademiai Kiado, Budapest, 1967.
  • [5] -, Complement a'letude des operators de class $ C$, Acta Sci. Math. 31 (1970), 287-296.
  • [6] Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77. MR 0367682 (51 #3924)
  • [7] I. C. Gohberg and M. G. Kreĭn, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0218923 (36 #2007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A15, 47A45, 47A65

Retrieve articles in all journals with MSC: 47A15, 47A45, 47A65


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1163329-4
PII: S 0002-9939(1993)1163329-4
Article copyright: © Copyright 1993 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia