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MOURAD E. H. ISMAIL, YU TAKEUCHI, AND RUIMING ZHANG

(Communicated by Charles Pugh)

Abstract. We give proofs of summation theorems and continued fraction eval-

uations conjectured by R. W. Gosper. We also give two new elementary proofs

of a theorem of Gosper whose original proof uses matrix methods. One proof

uses iteration of two term recurrence relation. The latter proof is also used to

give elementary proofs of three other identities due to Gosper.

1. Introduction

The theory of hypergeometric and basic hypergeometric functions provides
a canonical way of writing many combinatorial identities and, together with

complex analytic techniques, have provided a systematic way of proving combi-

natorial identities. Recently, however, R. William Gosper, through very clever
computer experimentation with the computer algebra package Macsyma, for-

mulated many identities which do not fit the existing theory of hypergeometric

functions and q series as in [15, 3], for example. He developed new techniques

to prove certain identities and formulated many conjectures that led to very in-

teresting developments [4]-[6]. This paper is the second installment of a serious

attempt to go through Gosper's computer files and correspondence. The first

installment was [11]. The purpose of this series of papers is to explain where
Gosper's formulas come from and to prove his conjectures.

An interesting identity of Gosper [8] is

oo

1 + Y,(Vx~ - C)(yfjx ~ C) ■ ■ ■ (X2'" - C)

(1.1) »=1

=-'—, 1 -c < 1, x £ (-oo, 0).
c+l

For a proof see [7, §5]. Gosper used his matrix technique and his theory of path
invariance and telescopy to prove (1.1). In [9] Gosper mentioned the identity,
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due to Gene Salamin,

(1.2)
/                                     nn + arctan... \   2

°°  / nn + arctan-\
^2   «7t +arctan---2-       = (3tanh(3tanh3...))-2.

n=l\ j

Gosper [9] conjectured the continued fraction evaluations

c sinh x -l-

c sinh(x + y) + —7-r~.— .  ,  -
c smh(x + 2y)-{-

(1.3) e\p{-n[(n - l)y + x]}

= czinhx nLi csinh(ky)csinh[(k - l)y + x]
^ exp[-n(ny + x)] '

° nLi c sinh(ky)c sinh(A:y + x)

c-y-i/y-—-

cz-y- l/y-
czl -y-l/y-

(1.4) v2
2wi=ollfc=i m _z-fc)fi -Cvzk-1)

= (c- l/y)-U )[\    y       ' ,
r-voo     -r-rfl       _y__

^n=0llk=X{x_z-k){X_cyzk)

1
C+ -i-

CZ H-z-

cz2 + —T + • • •
(1-5) Cz3 .

= (, , ^^^(z^-l^l+cz^)

V°°   TT"     _-_
2w,=0llA:=l  (z-fe_l)(l+Czfc)

He also pointed out the following interesting consequence of (1.3) [9]:

oo exp{-n[(n- l)y + x]}

^^K^csmhiycsinh^     l), + x]      1 L       /1+ .nh     1
v-o     ^00 exp[-«(rzy + x)] 2 [       V J

° ITLi c sinh(A:y)c sinh(A:y + jc)

which follows from the continuity of the continued fraction in (1.3) as a function

of y.
In §2 we give two proofs of (1.1) and a proof of the following generalization
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of (1.2):

/                                     nn + arctan... \ ~2
°°  / nn + arctan- \

y   nn + arctan-

(1.6) „=i \^ ° )

_,       c- 3
= (ctanh(ctanhc...))     + —-—■,        c > 1.

6(c- 1)

We also give a substantial generalization of (1.6) which enables us to replace

the exponent 2 in the sum on the left side of (1.6) by any even exponent; see

(2.6) and (2.7).
In the process of proving (1.1), in §2 we show that if / is real analytic in a

neighborhood of x = 1 and satisfies the functional equation

(1.7) f(x2) = 1 + (x - c)f(x)

then

(1.8) /W = !1^.

Both sides of (1.1) are obviously real analytic in x in a neighborhood of x - 1,

and one can easily verify that they satisfy (1.7). This raises the question of

whether (1.7) has other solutions under conditions weaker than real analyticity

in a neighborhood of x = 1. For remarks and a conjecture see the last part of

§2. In [8] Gosper mentioned the identity

00 n ( \

V—-_(\-c\TzA  1_—1 •••n-cz-3(-1/2>"+')(,.,,   h*<-mA cVzH  vwj (1 '
Z        — C   7.

=   l+/ .    m-c)\<i.

It is interesting that ideas behind our proofs of (1.1) also establish (1.9). In

particular, there is a simple principle of iterating identities involving rational

functions that leads to formulas like (1.1) and (1.9). This together with a proof

of (1.9) will also be discussed in §2.
In §3 we establish (1.3) and (1.4). We evaluate the continued fraction in (1.5)

and seem to get an answer in a form different from the right-hand side in (1.5).

We have not been able to transform our answer to Gosper's conjectured form.

Our answer is (1.5') at the end of §3. We point out that (1.3) is equivalent to

a continued fraction of Al-Salam and Ismail [1]. We also show that the partial

numerators and partial denominators on (1.3)—(1.5) can be expressed in closed

form as single sums.

After we prepared a preliminary version of this paper Gosper [10] commu-

nicated to the first author the following trigonometric version of (1.1):

£ J f[[-2cos(b + a/(-2)k)] 1 sin[-3bn -c + a/(-2)n]
(1.10) «=i lk-i J

sin(2Z> - a) sin(c + b) ,.     1
= —-—. ;.,,--,       cos6<-.

sin(3o) 2
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In §4 we will prove (1.10) and the identities

mn \V   lYa + bz^r"     a-b ( 2       I + z\     a + b
(U1)        gH   i + z(-2)- =^(h17 + T^j--6-'

OO

^(-i)"(az(-2)-/3 + ^s^rvsj (2^_ !/ ^

(l-l2) n=l

= (z-2/3 - l)[fl + *(z-2/3 + 1 - z2/3)].

The identities (1.11) and (1.12) are stated in [9], but the original version of
(1.12) contained a minor typographical error. In §4 we will also prove the

additional identity of Gosper

^    sinh(2"<2 - bn + c)

^n&[2cosh(2*<i + 6)]

sinh(a + b) [ _ I 2b_c fr e»sinh(2»a + b)
sinhZ)       SmniC    ZD) + 2e       11 sinh(2«a + 26)     '

Re(a) > 0, Re(b) > 0, |cosh(a + b)\ < \. Gosper noted that the infinite

product in (1.13) converges very rapidly, like exp(-a2"), but the series on the

left-hand side converges at a much slower rate.

2. Formulas (1.1), (1.6), and (1.9)

Our first proof of (1.1) is based on the functional equation (1.7), while the

second proof uses the principle of iteration.

A proof of (I.I). Let f(x) denote the left-hand side of (1.1). Clearly
oo

f(x2) = 1 + J2(x ~ CX*1/2 - c) • ■ ■ (x2'"" - c) = 1 + (x - c)f(x),
n=\

and (1.7) follows. Since f(x) is analytic in the complex variable x in a

neighborhood of x — 1, it is represented there by its Taylor series f(x) —
Y^=oAn(x- 1)" . Now substitute the Taylor series of / in the functional equa-

tion (1.7) to get
oo oo oo

$>„(* - 1)"[2 + (x- 1)]" = 1 + (1 - c)Y,An(x - 1)" + $>„(* - 1)"+1,
n=0 n=0 n=0

and upon equating coefficients of (x - 1)" we obtain

A0= l + (l-c)i40,

E    (nJ_j)22j-nAj^A„^+(l-c)An,        n>0.

So Ao — l/c, Ax = l/[c(c+ 1)], A2 = Ai = 0, and the above recursion implies

that An = 0, n>3. Thus f(x) = l/c + (x - l)/[c(c+ 1)] = (x + c)/[c(c+ 1)]
and (1.1) is proved.

A second proof of (I.I). The idea is to observe that

l + z/c     .       z-c2       ,     ,_        , Sz + c
-J-— = 1 + —,-TT = l + (Sz- C)—--- ,

l+c c(c+l) v Jc(c+l)
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where S is the square root operation: Sz = yfz, z > 0. Since the term

(Sz + c)/[c(c+ 1)] is the left-hand side with z replaced by y/z, we think of the
operator S as an iteration operator for the function (z -l- c)/[c(c + 1)]. Now

define fn(z) via

fn(z):=l + (Sz-c)(l + (S2z-c)(l + ---(l+S"z-c) •••)).

A repeated application of the above process leads to

=^{n<s*^>}<s"+|z+c).

Now let n -* oo and the extreme right-hand side in the above equality will tend

to 0 very rapidly since |1 - c\ < 1 and Snz —► 1 as n -» oo. This completes

the proof of (1.1).

It is worth noting that our second proof gives the rate of convergence of

fn(z) to the function (1 + z/c)/(c+ 1). The convergence is clearly exponential.

Gosper [7] observed the fast convergence.

A proof of (1.9). This proof uses functional equations. The term n — 0 in the

sum on the left-hand side of (1.9) is (1 - czil2)/z, so we set

oo n _      / \

(2-1)   /(.):=zgi^(l-cv^)^l--^j...(l-cz-3(-'/2r-).

Since f(z) involves mostly z3 and we will expand f(z) in a neighborhood of

z = 1, we set u = z3 and g(u) = f(z).

From (2.1) it is clear that

...(1_cz3(-l/2)»);

hence, upon replacing n by n + 1 in the above sum we find

f(z2) — 1 - cu + cu(l - cu)f(l/z),

that is,

(2.2) g(u2)=l-cu + cu(l-cu)g(l/u).

If g(u) — zZn>oAn(u - 1)" , then the above functional equation gives A0 =

(1 - c)/(l - c + c2). Furthermore,

g(u2) = f/(u-ir     £     (n\22"-"'An
w=0 m>n>m/2 ^ '

and

SU ) = E^(1 -")*""* =AQ + J2(-l)kAk(u-l)k(l+u-l)-k
yu/       k=0 k=\

oo m ,   ,

= Ao + J2(i-urY,An7^.
w=l n=\        v '"
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Now the substitution of the above expansions in (2.2) and equating coefficients

of like powers of u - 1 implies A0 = (l-c)/(l-c + c2) and Ax =-c2/(l + c3).
For m > 2 we compute the An's recursively from

(-D"1    E     (mn-n)22n-mA»
m>n>m/2  v '

m ,   -, m—\ ,   ..

= c(l-c)TAn-P^y+c(2c-l)YAn(Wm-n-x
' *-"     (m-n)\ ' *-"     (m-n-l)\

n=0       y ' n=0        v '

m—2 ,   ■
- r2 V A      Wm-w-2

^   "(m-n-2)1'
n=0        K '

and conclude, by induction, that Am = 0 for m > 2. This completes the proof.

A proof of (1.9) by iteration. Start with the identity

X-c2z" =(l-cz^2)V- + ^^(l-^-\]-
Z(l+C3)       U ][z +  1 +C3  V V^;J   '

then observe that the second term in the square bracket is the left-hand side

with z replaced by l/y/z . This is the idea of iteration. Define the iteration

operator S, which acts only on the variable z , by Sz = l/y/z . Then define

fm(z) as

m n _     / \

/.(^^(■-^(i-^j-d--"-"21-').

It is then clear that

...(1_cz-w-^+1(1t^),

and thus the partial sums fm(z) converge to (1 - c2z3)/[z(l + c3)]. Thus the

proof is complete.

Proof of (1.6). It is clear that the transcendental equation

x = c tanh x

has a unique positive real root L, say, when c > 1. The successive approxi-

mations

xx = c,        x/i+x = ctanhxfc,    k-l, 2,...,

converge to L. On the other hand the transcendental equation

(2.3) x - ctanx,        c > 1,

has no solution in (0, n) and has precisely one solution in (nn, (n + l)n),

n = 1,2,... , as can be seen from the graphs of y = tanx and y = x.
Therefore,

u = nn + arctan(«/c),        c>l,«=l,2,...,



PAGES FROM THE COMPUTER FILES OF R. WILLIAM GOSPER 753

has a unique solution u„ in («7t,(n-i-l)7r). The successive approximations

u„j = nn,        untk+x=nn + arctan(u„,k/c),    k = l,2,...,

will converge to un . With this notation (1.6) is

(2.4) thrh-
n=\     "

Now consider the function

(2.5) f(z) := tan z - z/c.

It is clear that 0, ±u„ , and ±iL are zeros of f(z) and its poles are ±(n-\)n ,

n = 1, 2, ... . To see that / has no other zeros note that f(z) = 0 if and only

if

1 _ tanz _ v^ -2

c ~ ~T ~~ ^ z2-(n- l/2)2n2'
n=\

But the imaginary part of the above series does not vanish if Im z2 ^ 0, hence,

/ has no zeros other than ±u„ and ±iL. Let

Ck := a square with vertices ±kn± ikn,        k = 1,2, ... .

It is easy to see that there is a constant M independent of k such that

\f'(z)/f(z)\ <M   for all z £ Ck and all k, k = 1, 2,...

[16]. Therefore,

/     { f, \ dz -> 0   as k -> oo.

Now the residue of z~2f'(z)/f(z) at ±w„ is l/(un)2, while the residue of

z~2f (z)/f(z) at ±/£ is -l/L2. Furthermore the residues of z~2f'(z)/f(z)

at z = ±(«-j)7r and at z = 0 are equal to -[(n-\)n]~2 and 2c/[3(c-l)],

respectively. Therefore,

^U2        L^       22^ (2/,- 1)2^2 + 3(C_ 1)  -°"
n=\    " n=l v y v '

Now the substitution of iZn>x(2n - l)-2 = 7r2/8 in the above equality estab-

lishes (1.6).

It is interesting to note that if we integrate [z(z - u)]~xf'(z)/f(z) along

Ck and repeat the steps in the above proof we will discover a generalization of

(1.6). To see this, define g(z) by

, , 1       f'(z) c - cos2 z
g(z) :=-:—-—- =-.

z(z - u) f(z)      z(z - u)(csinz - zcosz)cosz'
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It is easy to see that

Rcs[g(zy,z = ±iL]=±.L{±)L_uy

Res[g(z);z = ±un]=±Un{±lUn_u),

c — COS  u
Res[g(z); z = u] = —.—:-r-,

u(c sin u - u cos u) cos u

Res[g(z);z = 0] = ~,

ReS    g(z); Z = ± ( n - — ) n     = —;-,  ,,,    r-;-—rrr--,
[SK >' \       2)   \      ±(n-l/2)n[±(n-l/2)n-u]

where

nn + arctan- ••
nn + arctan-

(2.6) un := nn + arctan-,

L := ctanh(ctanh(c- ••)),    and   c > 1.

Furthermore,

/   —;-, ,, . dz —> 0   as k —* oo.
Jck z(z ~ u)f(z)

Therefore, we proved

c - cos2 x _   1 2^2^ 2

x(csinx-xcosjc)cosx     x2    L2 + x2    ^ x2 - u2    ^ (n - l/2)2n2 — x2'
n=\ "     n=\

We replaced u by x in the above formula. The last sum on the right-hand side
is (tanx)/x . Thus we have established the Mittag-LefHer expansion

2 ^      2 1 - (sin(2x)/2x) tanx

L2 + x2     2-^x2-u2     x2cosx[(sinx)/x - (cosx)/c]        x

Clearly (1.6) follows from (2.7) by letting x —> 0. It is worth noting that other

identities involving power sums of u also follow from (2.6) by expanding both

sides of (2.6) in powers of z and then equating coefficients of various powers

of x.
We now discuss the functional equations (1.7) and

(2.8) f(z2) = 1 - cz3 + cz3(l - cz3)/(l/z).

Recall that / of (1.8) satisfies (1.7) for all x and all c, c ^ 0, -1. If \c-11 < 1
and / is right continuous at x = 0, then f(x) := [(l+x/c)/(c+ 1)] on [0, 1).
To see this assume the contrary and let fx(x) and f2(x) be two solutions of

(1.7) which are right continuous at x = 1. Thus h(x) '■= A(x) - f2(x) satisfies

(2.9) h(x2) = (x - c)h(x).

Clearly h(l) = 0. Iterating (2.9) we get

h(x) = (1 - c)nh(x2~n) f[[l + (x2~k -l)/(l- c)].

k=\
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When n->oo, since 11 —c\ < 1, the above relationship implies h(x) = 0 for x

in the complex plane cut along (-oo, 0). We believe that / of (1.8) is the only

measurable solution to (1.7), 0 < x < oo, and it is likely that (1.7) will have

additional nonmeasurable solutions. As far as (2.8) is concerned we proved that

f(z) = (1 - c2z3)/(l + c3) is the only solution to (2.8) which is real analytic on

a neighborhood of z = 1. This also raises questions about how much local or

global smoothness assumptions are necessary to guarantee that (2.8) will have

a unique solution.

3. Continued fractions

Recall that the q shifted factorial is

n

(a;q0):=l,       (a; q)n = JJ(1 -aqk~x),    n = 1, 2,... or n = oo.
k=\

For convenience when n = oo we need to assume \q\ < 1. We will use this

notation in this section.

We now come to the continued fraction evaluation (1.3). Set

c sinh x
X:= { .

c sinh x -\-

c sinh(x + y) H-^-r-.-=—.;-
v      ''     c sinh(x + 2y) + ■ ■ ■

It is clear that the evaluation of X is equivalent to the evaluation of (1.3).

Let N„(x, y) and Dn(x, y) be the partial numerators and denominators of

the above continued fraction, respectively. They satisfy the initial conditions

N0(x,y) = 0,        A.(x, y) = csinhx,

Do(x, y) = I,       Dx(x, y) = csinhx

and the three-term recurrence relation

(3.2) fn+x =csinh(x + ny)fn +f„-x,        «>0,  /„ = N„(x, y) or D„(x, y).

We set

(3.3) q:=e2y,        u:=e2x;

hence,

(3.4) fn+l =-JL-{uq« -!)/„ + /„_,.

In order to identify the A„'s and D„'s in terms of the polynomials in [1] we

need to renormalize the A„'s and D„'s (hence also the /„'s) via

N„(x,y) = inqn^2-"^un(x,y),

(3.5) Dn(x,y) = inqn(2-"V%(x,y),

fn = inqn{2-n)/4gn.

The recurrence relation (3.5) is transformed to

(3.6)

gn+i =    -, r-  (1 -uq")gn-q"  '£„_!,        «>0, gn=8n(x,y) or un(x,y).
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Al-Salam and Ismail [1] studied the polynomials [U„(x; a, b)} generated by

(3.7a) U0(x;a,b):=l,        Ux(x; a, b) := x(l+a),

U„+i(x;a,b) = x(l+aq")Un(x;a, b)

-bq"-xUn_x(x;a,b),        n > 0.

It is easy to see that by renormalizing x and Un , there is no loss of generality

in taking b — I. The parameter b was kept, however, for convenience. Clearly
S„(x,y) - U„(icq~x/4u~x/2/2; -u, 1); hence,

Dn(x, y) = i"q»V-*V*Un ('JLyrWq-1'4;-u,l)

(3-8) fie \= inqn(2-n)IAlJn l^-x-y/2 . _g2x > 1 j

Using the representation [1, p. 274]

(3.9) Un(x;a,b) = V ^ «>-*<" *)*f~*l-** ffi-D,
£35      (-a;q)k(q\q)k(q\Q)n-2k

we get

,lim       n,       ,    ^' npo "'[csinh(x + j»/sinh(Q- + az - fc + l)y)]
(3.10) Z)„(x,y)=>   -^-—r^-.

^        nj=0 csinh(* + 7» sinh(0' +1)y)

On the other hand it is clear from (3.1) and (3.2) that

(3.11) Nn(x,y) = csinhxZVi(x + y,y),

which together with (3.10) gives an explicit representation for Nn(x, y). Since

the continued fraction X is invariant under x -* — x, y —> -y, c —> —c, we
may restrict ourselves to the case

Rey < 0,    that is, \q\ < 1.

From the asymptotic formula

Un(x ;a,b)* xn(-a;*)«, £ °j x-2kqk{k-i) k|<i,
k~'0(Q;q)k(-a;q)k

which implies

Dn(x, y) « (-£)" exp {-nx - n(n - 1)1} (e2x ; e^U

(3-12) ^ exo[k(x + ky)]

*=o n7=i{c sinh/eye sinh[x + (j - l)y]}

holding for Rey < 0. Now (1.3) follows from (3.11), (3.12), and the fact that
N„(x, y)/D„(x, y) —► X as «->oo.

Note that Gosper did not state conditions under which (1.3) holds. Obviously

it holds when Rey > 0, and if Rey < 0 we must perform the change of

variables (x,y,c) —> (-x, -y, —c), which does not change the continued

fraction but gives the correct right member of (1.3).
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Ismail and Mulla [ 12] essentially proved the continued fraction representation

-= 2BFaq(x)/Fa(x),

(3.13) 2x-a-

2x - aq-=-
2x - aq-

where

ra{X).-^{B2.q)M{q.q)k,

and A,B = x ± (x2 - l)xl2,  \B\ < \A\.   The relationship (3.13) holds if
\B\ < \A\. Before we proceed with the choices

(3.14) a = -c,q = z,B = -y, so A = -l/y, and \y\ < 1,

we want to establish an alternate representation for Fa(x). First use the fact

(B2;q)k+x = (B2;q)oo/(B2qk+x;q)0c;

then apply Euler's identity [3]

to get

F {x) -        *       f (-aBtq^l2 f (-&1   (,_1)/2   (k+x)
a[)~(B2;i)oo^0      (q;q)k      f^ir, Q)jq        q      •

Interchanging the k and j sums, summing the k sum by Euler's theorem we

arrive at the representation

(3> 6) ^a[X)- (B2;q)oo^0(q;q)j(aB;q)f

It is now straightforward to obtain (1.4) from (3.13), (3.14), and (3.16).
It is important to note that (1.4) holds if |y| < 1, but if \y\ > 1 we must

interchange y and l/y.
Finally we come to (1.5). It is easier to prove (1.5) directly rather than to try

to get it from known results [12, 13]. Let N„ and D„ be the partial numerators

and denominators of the reciprocal of the continued fraction in (1.5). Thus

A0 = 0,     A, = l,    D0=l,    Dx=c,

wn+x - cz"w„ + w„-X,        n > 0, wn = D„ or Nn.

Let W(t) = Enx^Ai to see that (3.17) for w„ = D„ is equivalent to the

functional equation

(l-t2)W(t) = l + tcW(zt).

Thus when \z\ < 1 we iterate the above functional equation and use W(znt) -»

1 as n —► oo to get
~   (ct)kZk(k-\)I2
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and now Darboux's method [14] yields

lAcfcz^-"/2

Thus

°°   c2kzk(2k-\) c        °°   c2kzk(2k+\)
(3-18) ^ = E(?^   and   r,2„+1« £.^^.

fc=0  V '^ A:=0 v '•**

From (3.17) it is clear that Nn is Z)„_i with c replaced by cz. Therefore,

(3.18) gives

N2n [^ c2Ar+lz(Ar+l)(2fc+l)"|     / I" ~   C2*Z<:(2A:-1)'

}™D?„= [^    (z2;z2)2,+1    J/  [E(z2.z2)2fc_  •

™Z)2„+1  -   [^ (Z2; Z2)2, J/    [^ (22; Z2)2fc+1     •

Thus when |z| < 1 the convergents (approximants) of even and odd orders will

converge to different limits, and the continued fraction (1.5) will diverge.

We now come to the case |z| > 1. Let wn = z"^n~x^2v„ so that

(3.19) vn+x = cvn + zx~2nvn-x,        n>0.

Comparing (3.7b) and (3.19) we see that the reciprocal of the continued fraction

in (1.5) equals

1
X:=--x-.

(3.20) c+      Z     3
z~5

c+-
c + ---

But X is the continued fraction associated with the C/„'s generated by (3.7a)

and (3.7b) when a = 0, x = c, b = -z, and q = z~2 . From (5.3) in [1] we
obtain

i r °°      — 2n / r °°      — 2n
(3.21) X=-   Tj-4-^z""^1)   /   V—£-.-z-^"-1)   .

C  [j^(z-2;z-2)n \/   l^(Z-2;Z-2)H

This shows that the left side of (1.5) is the reciprocal of the right side in (3.21).

Thus we proved that for |z| > 1 we have

1
C +-j"

CZ-\-^-
(1.5') cz2 + ---

oo               _2n                                      I   ' oo              _2n

= C    E7-4-^Z-"'2"-')     /     Yj-4-j^Z-"^1'    .
[Z^(z-2;z-2)n \/   [^(z-2;z-2)n

Gosper [9, p. 7] indicated that both sides of (1.5) equal

_L     _L     _L_     _L     _L 2 1 1
C+cz~cTz4~ + crz7 + ciz9     Sz10     c1zl2 + c9zl*     c^z1*

3 1+c4        3 4 _19
+ C9Z15        C11Z16 + C9Z17        C11Z18+C'(Z        >•
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It is easy to verify that both sides of (1.5') have the above asymptotic series as

z —► 00 .

4. More on iterations

We now come to (1.10)—(1.13). We will give a proof of (1.10) and only outline

proofs of (1.11)-(1.13) because the proofs of the four are similar beyond the

identification of the iteration operator.

Proof of (1.10). Let us denote the left-hand side of (1.10) by f(a,b,c). By
subtracting the term n = 1 from f(a, b, c) and then replacing the summation

index n by n + 1 in the remaining series we discover

f(a, b, c) = 2cos(b - a/2)sin(3Z> + c + a/2)

( " ) - 2 cos(b - a/2) f (-a/2 ,b,c + 3b).

If we denote the left side of (1.10) by g(a, b, c) then after using some elemen-

tary trigonometric identities we find that g(a, b, c) also satisfies (4.1). The

iteration operator S acts on a and c by S(a, c) = (-a/2, c + 3b) and b re-

mains invariant. Iterate (4.1), with / replaced by g. Now (1.10) follows from

the boundedness of g(a, b, c) as a function of a and c when b ^0, -I, ...

and the assumption \cosb\ < \ .

Proof of (I.II). The iteration operator is Sz - l/\fz . Iterate the functional

equation

which is satisfied by both sides of (1.11).

Proof of (1.12). Both sides of (1.12) satisfy the functional equation

(4 3) f(z) - f(l/Vz) = -(az~x'6 + bz-^)(zx'2 - z~x'2)

= (az~2l3 + bz~^)(l-z).

Apply the iteration operator S: z —> l/\fz .

Proof of (1.13). The functional iteration here is (a, b, c) —> (2a, b, c - b).

Both sides of (1.13) satisfy the functional equation

(a a\ fi     u    \ 1 /•/->     u u,     sinh(2a-b + c)
(4.4) f(a,b,c)--=-T-.-rr/Y2ai, b, c - b) =    .      . ,-tt1-
y     ' JK       '   ;     2eosh(a + b)JK ' '       2cosh(a + b)

The rest is straightforward.

It is interesting to note that the term [sinh(a + b) sinh(c-2&)]/(sinh b) on the

right-hand side of (1.13) is a particular solution of the functional (4.4), while

the other term on the right-hand side of (1.13) is a solution of the corresponding
homogeneous functional equation.

Another identity of Gosper is

,,n       p.,  .   /        ,      a \ tt       /l     a\     sin(a + b)sin(2b-c)
(4.5) £2"sin(c + ^ + -)ncos(ft + -)= ^->.

n=0 k=\

We leave the proof of (4.5) to the interested reader as an exercise in the appli-

cation of the iteration principle.
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Gosper [7] used matrices of the form [J *] to prove (1.9), where * stands

for suitably chosen elements. Our method of iteration uses two-term recursions.

Thus Gosper's matrix methods in the case of n = 2 is somehow related, and

possibly equivalent, to the use of two-term recursions. It is likely that his higher

method for higher-order matrices correspond to the use of recursion relations

of higher order. This point is still under investigation.
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