Topological orbifolds
Author:
Carla Farsi
Journal:
Proc. Amer. Math. Soc. 119 (1993), 761-764
MSC:
Primary 57S25; Secondary 19K56, 46L80, 57P99
DOI:
https://doi.org/10.1090/S0002-9939-1993-1198455-7
MathSciNet review:
1198455
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We show that two topologically homeomorphic orbifolds are also Lipshitz homeomorphic. We then prove that the -class of a good orbifold with finite fundamental group depends only on the topological structure.
- [1]
C. Farsi,
-theoretical index theorems for orbifolds, Quart. J. Math. Oxford 43 (1992), 183-200. MR 1164622 (93f:58231)
- [2]
-,
-theoretical index theorems for good orbifolds, Proc. Amer. Math. Soc. 115 (1992), 769-773. MR 1127139 (92j:58102)
- [3] M. Hilsum, Opérateurs de signature sur un variété lipschitzienne et modules de Kasparov non bornés, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), 39-52. MR 719945 (84k:58215)
- [4]
-, Functorialité en
-théorie bivariante pour les variétés lipschitziennes,
-Theory 3 (1989), 401-440. MR 1050489 (91j:19012)
- [5]
T. Kawasaki, The signature theorem for
-manifolds, Topology 17 (1978), 75-83. MR 0474432 (57:14072)
- [6]
J. Rosenberg and S. Weinberger, Higher
-indices (on smooth and Lipschitz manifolds) and applications, preprint.
- [7] M. Rothenberg and S. Weinberger, Group actions and equivariant Lipschitz analysis, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 109-112. MR 888883 (88j:57040)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57S25, 19K56, 46L80, 57P99
Retrieve articles in all journals with MSC: 57S25, 19K56, 46L80, 57P99
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1993-1198455-7
Article copyright:
© Copyright 1993
American Mathematical Society