Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Duality for representations of a Hecke algebra


Author: Shin-ichi Kato
Journal: Proc. Amer. Math. Soc. 119 (1993), 941-946
MSC: Primary 20G05; Secondary 20C33, 20H15
DOI: https://doi.org/10.1090/S0002-9939-1993-1215028-8
MathSciNet review: 1215028
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a duality operator for representations of the Hecke algebra of a Weyl group or of an affine Weyl group in terms of a certain involution on this algebra.


References [Enhancements On Off] (What's this?)

  • [A] D. Alvis, The duality operation in the character ring of a finite Chevalley groups, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 907-911. MR 546315 (81e:20012)
  • [B] A. Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233-259. MR 0444849 (56:3196)
  • [C] C. W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra 62 (1980), 320-332. MR 563231 (81e:20011)
  • [DL] P. Deligne and G. Lusztig, Duality for representations of reductive groups over a finite field, I, II, J. Algebra 74 (1982), 284-291; ibid. 81 (1983), 540-545.
  • [Kt] S. Kato, On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. in Math. 55 (1985), 103-130. MR 772611 (86d:20048)
  • [Kw] N. Kawanaka, Fourier transforms of nilpotently supported invariant functions on a semisimple Lie algebra over a finite field, Invent. Math. 69 (1982), 411-435. MR 679766 (84c:20053)
  • [M] H. Matsumoto, Analyse harmonique dans les systems de Tits bornologiques de type affine, Lecture Notes in Math, vol. 590, Springer-Verlag, Berlin, Heidelberg, and New York, 1979. MR 0579177 (58:28315)
  • [Sl] L. Solomon, The orders of the finite Chevalley groups, J. Algebra 3 (1966), 376-393. MR 0199275 (33:7424)
  • [Sp] T. A. Springer, Reductive groups, Proc. Sympos. Pure Math., vol. 33, part 1, Amer. Math. Soc., Providence, RI, 1979, pp. 3-27. MR 546587 (80h:20062)
  • [Z] A. V. Zelevinskii, $ p$-adic analogue of the Kazhdan-Lusztig hypothesis, Functional Anal. Appl. 15 (1981), 83-92. MR 617466 (84g:22039)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20G05, 20C33, 20H15

Retrieve articles in all journals with MSC: 20G05, 20C33, 20H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1215028-8
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society