Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A remark on weighted inequalities for general maximal operators

Author: C. Pérez
Journal: Proc. Amer. Math. Soc. 119 (1993), 1121-1126
MSC: Primary 42B25; Secondary 47B38
MathSciNet review: 1107275
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ 1 < p < \infty $, and let $ w,\;v$ be two nonnegative functions. We give a sufficient condition on $ w,\;v$ for which the general maximal operator $ {M_\mathcal{B}}$ is bounded from $ {L^p}(v)$ into $ {L^p}(w)$. Our condition is stronger but closely related to the $ {A_{p,\mathcal{B}}}$ condition for two weights.

References [Enhancements On Off] (What's this?)

  • [1] A. Córdoba, On the Vitali covering properties of a differentiation basis, Studia Math. 57 (1976), 91-95. MR 0419714 (54:7732)
  • [2] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. Stud., vol. 116, North-Holland, Amsterdam, 1985. MR 807149 (87d:42023)
  • [3] R. A. Hunt, D. S. Kurtz, and C. J. Neugebauer, A note on the equivalence of $ {A_p}$ and Sawyer's condition for equal weights, Conf. Harmonic Analysis in honor of A. Zygmund (W. Beckner, A. P. Calderón, R. Fefferman, and P. W. Jones, ed.), Wadsworth, Belmont, CA, 1981, pp. 156-158. MR 730066 (85f:42032)
  • [4] B. Jawerth, Weighted inequalities for maximal operators: linearization, localization, and factorization, Amer. J. Math. 108 (1986), 361-414. MR 833361 (87f:42048)
  • [5] B. Jawerth and A. Torchinsky, The strong maximal function with respect to measures, Studia Math. 80 (1984), 261-285. MR 783994 (87b:42024)
  • [6] K. C. Lin, Harmonic analysis on the bidisc, Thesis, U.C.L.A., 1984.
  • [7] B. Muckenhoupt, Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [8] C. J. Neugebauer, Inserting $ {A_p}$-weights, Proc. Amer. Math. Soc. 87 (1983), 644-648. MR 687633 (84d:42026)
  • [9] C. Pérez, Weighted norm inequalities for general maximal operators, Proceedings of a Conference in Harmonic Analysis and Partial Differential Equations in honor of J. L. Rubio de Francia (J. Bruna and F. Soria, eds.), Publ. Mat. 34 (1990).
  • [10] -, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted $ {L^p}$-spaces with different weights, preprint, 1990.
  • [11] E. T. Sawyer, A characterization of a two weight norm weight inequality for maximal operators, Studia Math. 75 (1982), 1-11. MR 676801 (84i:42032)
  • [12] -, Two weight norm inequalities for certain maximal and integral operators, Lectures Notes in Math., vol. 908, Springer-Verlag, New York, 1982, pp. 102-127. MR 654182 (83k:42020b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25, 47B38

Retrieve articles in all journals with MSC: 42B25, 47B38

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society