A remark on weighted inequalities for general maximal operators

Author:
C. Pérez

Journal:
Proc. Amer. Math. Soc. **119** (1993), 1121-1126

MSC:
Primary 42B25; Secondary 47B38

DOI:
https://doi.org/10.1090/S0002-9939-1993-1107275-0

MathSciNet review:
1107275

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let , and let be two nonnegative functions. We give a sufficient condition on for which the general maximal operator is bounded from into . Our condition is stronger but closely related to the condition for two weights.

**[1]**A. Córdoba,*On the Vitali covering properties of a differentiation basis*, Studia Math.**57**(1976), 91-95. MR**0419714 (54:7732)****[2]**J. Garcia-Cuerva and J. L. Rubio de Francia,*Weighted norm inequalities and related topics*, North-Holland Math. Stud., vol. 116, North-Holland, Amsterdam, 1985. MR**807149 (87d:42023)****[3]**R. A. Hunt, D. S. Kurtz, and C. J. Neugebauer,*A note on the equivalence of**and Sawyer's condition for equal weights*, Conf. Harmonic Analysis in honor of A. Zygmund (W. Beckner, A. P. Calderón, R. Fefferman, and P. W. Jones, ed.), Wadsworth, Belmont, CA, 1981, pp. 156-158. MR**730066 (85f:42032)****[4]**B. Jawerth,*Weighted inequalities for maximal operators*:*linearization, localization, and factorization*, Amer. J. Math.**108**(1986), 361-414. MR**833361 (87f:42048)****[5]**B. Jawerth and A. Torchinsky,*The strong maximal function with respect to measures*, Studia Math.**80**(1984), 261-285. MR**783994 (87b:42024)****[6]**K. C. Lin,*Harmonic analysis on the bidisc*, Thesis, U.C.L.A., 1984.**[7]**B. Muckenhoupt,*Weighted norm inequalities for the Hardy-Littlewood maximal function*, Trans. Amer. Math. Soc.**165**(1972), 207-226. MR**0293384 (45:2461)****[8]**C. J. Neugebauer,*Inserting*-*weights*, Proc. Amer. Math. Soc.**87**(1983), 644-648. MR**687633 (84d:42026)****[9]**C. Pérez,*Weighted norm inequalities for general maximal operators*, Proceedings of a Conference in Harmonic Analysis and Partial Differential Equations in honor of J. L. Rubio de Francia (J. Bruna and F. Soria, eds.), Publ. Mat.**34**(1990).**[10]**-,*On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted*-*spaces with different weights*, preprint, 1990.**[11]**E. T. Sawyer,*A characterization of a two weight norm weight inequality for maximal operators*, Studia Math.**75**(1982), 1-11. MR**676801 (84i:42032)****[12]**-,*Two weight norm inequalities for certain maximal and integral operators*, Lectures Notes in Math., vol. 908, Springer-Verlag, New York, 1982, pp. 102-127. MR**654182 (83k:42020b)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
42B25,
47B38

Retrieve articles in all journals with MSC: 42B25, 47B38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1993-1107275-0

Article copyright:
© Copyright 1993
American Mathematical Society