Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On generators of $ L/R\sp 2$ Lie algebras


Author: Vladimir Shpilrain
Journal: Proc. Amer. Math. Soc. 119 (1993), 1039-1043
MSC: Primary 17B01; Secondary 17B40
MathSciNet review: 1154249
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L$ be a free Lie algebra of finite rank $ n$ and $ R$ its arbitrary ideal. A necessary and sufficient condition for $ n$ elements of the Lie algebra $ L/{R^2}$ to be a generating set is given. In particular, we have a criterion for $ n$ elements of a free Lie algebra of rank $ n$ to be a generating set which is similar to the corresponding group-theoretic result due to Birman (An inverse function theorem for free groups, Proc. Amer. Math. Soc. 41 (1973), 634-638).


References [Enhancements On Off] (What's this?)

  • [1] Yu. A. Bahturin, Identical relations in Lie algebras, VNU Science Press, Utrecht, 1987. MR 886063 (88f:17032)
  • [2] J. S. Birman, An inverse function theorem for free groups, Proc. Amer. Math. Soc. 41 (1973), 634-638. MR 0330295 (48:8632)
  • [3] R. H. Fox, Free differential calculus, I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547-560. MR 0053938 (14:843d)
  • [4] A. F. Krasnikov, Generators of the group $ F/[N,N]$, Mat. Zametki 24 (1978), 167-173; English transl., Math. Notes 24 (1979), 591-594. MR 509900 (80c:20036)
  • [5] C. Reutenauer, Applications of a noncommutative Jacobian matrix, J. Pure Appl. Algebra 77 (1992), 169-181. MR 1149019 (93a:16021)
  • [6] I. A. Yunus, On the Fox problem for Lie algebras, Uspekhi Mat. Nauk 39 (1984), 251-252; English transl., Russian Math. Surveys 39 (1984), 221-222. MR 747808 (86a:17005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B01, 17B40

Retrieve articles in all journals with MSC: 17B01, 17B40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1993-1154249-X
Article copyright: © Copyright 1993 American Mathematical Society