Mapping Galois extensions into division algebras
Author:
Nikolaus Vonessen
Journal:
Proc. Amer. Math. Soc. 119 (1993), 10611068
MSC:
Primary 16W20; Secondary 12E15, 13B05, 16K99
MathSciNet review:
1160306
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a ring with a finite group of automorphisms , and let and be homomorphisms from into some division algebra such that and agree on the fixed ring . Assuming certain additional assumptions, it is shown that and differ only by an automorphism in and an inner automorphism of .
 [B]
Nicolas
Bourbaki, Commutative algebra. Chapters 1–7, Elements of
Mathematics (Berlin), SpringerVerlag, Berlin, 1989. Translated from the
French; Reprint of the 1972 edition. MR 979760
(90a:13001)
 [MR]
J.
C. McConnell and J.
C. Robson, Noncommutative Noetherian rings, Pure and Applied
Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With
the cooperation of L. W. Small; A WileyInterscience Publication. MR 934572
(89j:16023)
 [M]
Susan
Montgomery, Prime ideals in fixed rings, Comm. Algebra
9 (1981), no. 4, 423–449. MR 605031
(82c:16034), http://dx.doi.org/10.1080/00927878108822591
 [M]
Susan
Montgomery, Prime ideals and group actions in noncommutative
algebras, Invariant theory (Denton, TX, 1986) Contemp. Math.,
vol. 88, Amer. Math. Soc., Providence, RI, 1989,
pp. 103–124. MR 999986
(90g:16034), http://dx.doi.org/10.1090/conm/088/999986
 [PP]
Florian
Pop and Horia
Pop, An extension of the NoetherSkolem theorem, J. Pure Appl.
Algebra 35 (1985), no. 3, 321–328. MR 777263
(86d:16008), http://dx.doi.org/10.1016/00224049(85)900490
 [B]
 N. Bourbaki, Elements of mathematics, commutative algebra, Chapters 17, Springer, Berlin, 1989. Originally published as: N. Bourbaki, Éléments de mathématique, algèbre commutative, Chapitres 5 & 6, Hermann, Paris, 1964. MR 979760 (90a:13001)
 [MR]
 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, WileyInterscience, New York, 1989. MR 934572 (89j:16023)
 [M]
 S. Montgomery, Prime ideals in fixed rings, Comm. Algebra 9 (1981), 423449. MR 605031 (82c:16034)
 [M]
 , Prime ideals and group actions in noncommutative algebras, Contemp. Math., vol. 88, Amer. Math. Soc., Providence, RI, 1989, pp. 103124. MR 999986 (90g:16034)
 [PP]
 F. Pop and H. Pop, An extension of the NoetherSkolem theorem, J. Pure Appl. Algebra 35 (1985), 321328. MR 777263 (86d:16008)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
16W20,
12E15,
13B05,
16K99
Retrieve articles in all journals
with MSC:
16W20,
12E15,
13B05,
16K99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199311603064
PII:
S 00029939(1993)11603064
Article copyright:
© Copyright 1993
American Mathematical Society
